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Empirical testing of competing theories lies at the heart of social science research. We demonstrate that a well-known class of
statistical models, called finite mixture models, provides an effective way of rival theory testing. In the proposed framework,
each observation is assumed to be generated either from a statistical model implied by one of the competing theories or more
generally from a weighted combination of multiple statistical models under consideration. Researchers can then estimate
the probability that a specific observation is consistent with each rival theory. By modeling this probability with covariates,
one can also explore the conditions under which a particular theory applies.We discuss a principled way to identify a list of
observations that are statistically significantly consistent with each theory and propose measures of the overall performance
of each competing theory. We illustrate the relative advantages of our method over existing methods through empirical and
simulation studies.

Empirical testing of competing theories lies at the
heart of social science research. Since there typi-
cally exist alternative theories explaining the same

phenomena, researchers can often increase the plausibil-
ity of their theory by empirically demonstrating its su-
perior explanatory power over rival theories. In political
science, Clarke set forth this argument most forcefully
by claiming that “theory confirmation is not possible
when a theory is tested in isolation, regardless of the
statistical approach” (2007b, 886). In order to quanti-
tatively test competing theories, however, most political
scientists fit a regression model with many explanatory
variables that are derived from multiple theories. Achen
(2005) strongly condemns such practice as atheoretical
and calls it a “garbage-can regression.” To address this cri-
tique, some researchers have relied upon various model
comparison procedures to assess the relative performance
of statistical models implied by different theories under
investigation.1
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1Popular methods include Bayesian information criteria, the Vuong test, the J test, and the Clarke test (see Clarke 2000).

In this article, we demonstrate that a general and
well-known class of statistical models, called finite mixture
models, provides a more effective method for compara-
tive theory testing. The basic idea of mixture modeling
is intuitive. Each observation is assumed to be gener-
ated either from a statistical model implied by one of
the rival theories or more generally from a weighted
combination of multiple statistical models under con-
sideration. In addition to the parameters of each model,
researchers can estimate the probability that a specific
observation is consistent with either of the competing
theories. These observation-specific probabilities can be
averaged to serve as an overall performance measure for
each model, thereby also achieving most of what stan-
dard model selection methods are designed to do. Finite
mixture models are typically used to make a paramet-
ric model flexible by allowing model parameters to vary
across groups of observations. However, we show that
a mixture of non-nested statistical models can be used
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to empirically test competing theories in social science
research.

The fundamental difference between the mixture
modeling approach we advocate and standard model se-
lection procedures such as the ones mentioned in footnote
1 is that the former allows for the possibility that mul-
tiple theories can coexist; some observations are better
explained by one theory and others are more consistent
with another theory.2 In contrast, standard model se-
lection procedures are based on the hypothesis that one
theory explains all observations. Indeed, finite mixture
models make it possible to determine the conditions un-
der which each of the competing theories applies. This is
an important advantage given that theoretical refinement
is often achieved by considering the conditions under
which existing theories apply. Moreover, in some cases,
these conditions can be directly derived from the differ-
ences in the underlying assumptions of competing theo-
ries. Thus, the mixture modeling approach enables one
to test a set of competing theories as a whole including
their assumptions.3

The mixture modeling approach also provides a sig-
nificantly more flexible framework for theory testing than
standard model selection methods. For example, it can
handle both nested and non-nested models in the same
framework. The components of mixture models can be
either frequentist or Bayesian statistical models. More-
over, mixture modeling can simultaneously test more
than two theories. This contrasts with some of the popu-
lar non-nested model comparison procedures such as the
Vuong, J, and Clarke tests, which can test only two the-
ories at a time (see, e.g., Clarke 2008, for an exception).
By testing all theories at once, finite mixture models can
overcome the potential indeterminacy problem of these
non-nested tests (i.e., paper beats rock, rock beats scissors,
and scissors beat paper).

Another advantage of the proposed mixture model-
ing approach is its ability to account for uncertainty about
which theory explains each observation, thereby avoid-
ing the potential multiple testing problem resulting from
preliminary testing. In particular, if one estimates the
model chosen by a model selection procedure and com-
putes standard errors for estimated model parameters,
these standard errors will not incorporate the uncertainty

2See Gordon and Smith (2004), who share our motivation.

3We emphasize that the proposed approach does not require re-
searchers to specify such conditions. In fact, researchers may wish
to use the proposed mixture modeling approach in order to explore
what factors determine the relative applicability of each rival the-
ory. Of course, the findings obtained from such exploratory analy-
ses must be interpreted with caution, and deductive and systematic
theory testing is required to draw more definitive conclusions.

about model selection and hence will be underestimated.
In contrast, mixture modeling avoids the problem by fit-
ting all competing models in one step while accounting
for estimation uncertainty about the explanatory power
of alternative theories.

We emphasize that finite mixture models are a well-
known class of statistical models developed in a large body
of statistical literature (see, e.g., Frühwirth-Schnatter
2007).4 Although these models have begun to attract the
attention of other social scientists (e.g., Harrison and
Rutström 2009), relatively few political scientists have
used them.5 Using examples from international relations,
we show that the same modeling technology can be used
to test competing (and possibly non-nested) statistical
models implied by alternative theories.

Furthermore, we propose a principled way to iden-
tify a list of observations that are statistically significantly
consistent (as formally defined below) with each rival the-
ory. The identification of such observations opens up the
possibility that researchers directly connect the results
of quantitative analysis with their qualitative knowledge
(Lieberman, 2005). To construct such a list, our strategy is
to conduct statistical hypothesis tests on whether a partic-
ular observation is consistent with each of the competing
theories. We do so by formally addressing the well-known
problem of false positives associated with multiple test-
ing. Thus, researchers can control the expected number
of falsely classified observations on the resulting list such
that it does not exceed a predetermined threshold. Fi-
nally, the resulting lists provide alternative measures of
the overall performance of each theory. For example, the
proportion of observations that are statistically signif-
icantly consistent with one theory can serve as such a
measure.

While our proposed method is widely applicable, it
is motivated by an influential study from international
relations, concerning alternative accounts of trade pol-
icy preferences. In what follows, we first briefly describe
this motivating empirical example. We then demonstrate
how to use finite mixture models for empirical testing
of competing theories and develop methods to classify
observations for each theory. Simulation studies are then
conducted, and the proposed method is applied to the
trade policy preference example as well as another ex-
ample from international relations with three competing
theories. We discuss the pitfalls of the mixture modeling

4In this article, we consider a mixture of regressions, which is also
known as switching regressions (e.g., Quandt 1972). In political
science, Brandt and Freeman (2006) use Markov switching model
(particular mixture models) for time-series data.

5Notable exceptions include the work by Hill and Kriesi (2001),
Kedar (2005), and Iaryczower and Shum (2009).
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approach and ways to avoid them before giving conclud-
ing remarks.

A Motivating Empirical Example

In this section, we briefly describe the background of the
motivating empirical example regarding the competing
theories of trade policy preferences. An enduring theme
in the international political economy literature is the ex-
planation of preferences for free trade. In a seminal contri-
bution, Hiscox (2002) analyzes legislative voting on trade
bills in the United States by drawing on political economy
interpretations of two canonical theories from the trade
literature: the Stolper-Samuelson (SS) and Ricardo-Viner
(RV) models of international trade. The two competing
theories differ critically in the extent to which they em-
phasize factoral versus sectoral cleavages. The SS model
suggests that cleavages on trade policy will be along fac-
toral lines and predicts that the owners of factors which
the United States is relatively abundant in (compared to
the rest of the world) will favor trade liberalization.6 In
contrast, the RV model suggests an alternative cleavage
between supporters and opponents of free trade that runs
along sectoral lines.7 These two models of support for
trade policy figure centrally in this long tradition of inter-
national political economy research (e.g., Ladewig 2006;
Rogowski 1989; Scheve and Slaughter 2001).

A key observation made by Hiscox (2002) is that the
applicability of these competing models depends on how
specific factors of production are to particular industries.
If capital is highly mobile in the national economy, mean-
ing it can easily move across industries, then the SS model
is likely to be supported because the winners and losers
of trade will be found among owners of abundant and
scarce forms of factors, respectively. On the other hand, if
capital is more specific (i.e., less mobile), then cleavages
should fall along sectoral lines since capital is unable to
easily adjust across industries. Hence, Hiscox hypothe-
sized that whether congressional voting on trade bills can
be explained by the SS or RV model will depend on the
degree of factor specificity in the U.S. economy.

To empirically test this hypothesis, Hiscox collected
the data on factor specificity in the U.S. economy over
nearly two centuries. His measures varied considerably
over time, suggesting that during some eras voting should

6For the United States, this means that capital and land owners
will support free trade, whereas those specializing in labor should
oppose liberalization.

7Those in export industries should favor liberalization, whereas
those in import competing industries should oppose it.

be along factor lines (capital/land versus labor) and in
other eras along sectoral lines (exporters versus im-
porters). To leverage these changes over time, Hiscox es-
timated separate regressions for different eras in time.
Using a conventional model selection procedure called
the J test, Hiscox provides evidence that support for lib-
eralization is best accounted for by the SS model during
eras where specificity was low. In contrast, he finds that in
periods where specificity was high, the RV is the preferred
model.

Although breaking up the votes into different eras
constitutes one informal way to test the factor specificity
argument, the continuous measure of the factor speci-
ficity variable created by Hiscox does not provide natu-
ral breakpoints which can then be used to group votes.
Thus, any grouping might be criticized as arbitrary. As
we demonstrate, finite mixture models offer a relatively
straightforward and yet formal way to directly incorpo-
rate the factor specificity measure. In particular, mixture
models use the level of factor specificity to predict whether
the SS or RV model is appropriate for each trade bill or
even each vote. Thus, in addition to the overall assessment
of the two models, we are also able to identify the list of
trade bills in which the voting pattern is consistent with
each theory.

The Proposed Methodology

In this section, we first briefly review the specification,
estimation, and inference for finite mixture models in the
context of empirical testing of competing theories. We
then discuss a method to identify the observations that
are statistically significantly consistent with each theory.
We also propose several ways to measure the overall per-
formance of each competing theory. Finally, we compare
the proposed approach with the standard model selection
procedures.

Before describing the proposed methodology, we em-
phasize an important distinction between causal and pre-
dictive inferences. For causal inferences, ignoring relevant
confounders may result in omitted variable bias.8 In con-
trast, the existence of omitted variables alone does not
invalidate predictive inferences.9 Indeed, it is well known

8Although controlling for irrelevant variables can sometimes result
in bias, in typical observational studies analyzed by social scientists
it is difficult to argue that researchers should not adjust for the
observed differences between the treatment and control groups.

9For example, suppose that we have a simple random sample from
a population and find that in this sample, the turnout of overweight
voters is significantly lower than that of other voters. Clearly, even
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that for the purpose of predictive inferences, parsimonious
models tend to outperform unnecessarily large models
(see, e.g., Hastie, Tibshirani, and Friedman 2001). Thus, if
the goal of researchers is to construct a theory with strong
predictive power (as opposed to testing causal mecha-
nisms; see Imai, Tingley, and Yamamoto 2011, for rele-
vant methodological issues), parsimonious models that
can capture systematic patterns in the data are preferred.
While our method can be used for both purposes, the
causal inference approach would require strong research
designs that enable the identification of causal effects.
Our empirical examples should be thought of as the in-
stances of predictive inference. Nevertheless, whenever
using mixture models, well-specified theories play an es-
sential role in model specification.

Finite Mixture Models: A Review

Model Specification. Consider a finite number of M
different statistical models, each of which is implied by
one of the competing theories explaining the same phe-
nomena. Beyond the fact that it can handle more than two
theories at the same time, the proposed method is appli-
cable without modification regardless of whether these
statistical models are nested or not.

Finite mixture models are based on the assumption
that each observation is generated either from one of the
M statistical models or more generally from a weighted
combination of multiple statistical models. This does not
necessarily imply that researchers must identify all rel-
evant theories. It is also possible that any observation,
which is consistent with one of M theories under consid-
eration, is also consistent with other theories that may or
may not be included in the analysis. Rather, the goal of
finite mixture models is to measure the relative explana-
tory power of the competing theories under considera-
tion by examining how well a statistical model implied
by any of the rival theories predicts each observation in
the sample. For example, it is perhaps the case that the
Stolper-Samuelson and Ricardo-Viner theories do not ex-
haust all possible theories for trade policies. And yet, it is
of interest to investigate the relative performance of each
theory explaining the variation in the voting behavior of
legislators.

though body weight is not randomly assigned, the turnout differ-
ence between these two subsamples of voters is an unbiased and
hence valid estimate for the difference in turnout between their
corresponding subpopulations. However, this does not necessarily
imply a causal relationship; making people diet may not increase
turnout.

Formally, let fm(y | x, �m) denote a statistical model
implied by theory m where y is the value of the out-
come variable Y , x is the value the vector of covariates
X takes, and �m is the vector of model parameters. In
statistics, typical applications of finite mixture models
involve the same distributional and functional-form as-
sumptions with identical covariates. Similar to random
coefficient models, such an approach makes parametric
models flexible by allowing different groups of observa-
tions to have different parameter values. However, these
alternative statistical methods can neither provide a mea-
sure of overall support for each theory nor classify each
observation to one of the competing theories. Further-
more, different theories usually require different sets of
predictors. In fact, Hiscox (2002) employed logistic re-
gression models with different sets of covariates for the
Stolper-Samuelson and Ricardo-Viner theories. One may
also wish to specify different statistical models for rival
theories. For example, when analyzing the duration of
cabinet dissolution, the underlying risk of cabinet disso-
lution may be constant (as in the exponential model) or
increases over time (as in the Weibull model) (see King et
al. 1990; Warwick and Easton 1992). Unlike random co-
efficient models and regressions with interaction terms,
mixture models can handle these situations.

Given this setup, we formalize the idea that each ob-
servation is generated from one of M statistical models,
but we do not know a priori which model generates a
specific observation. Specifically, we use the latent (un-
observed) variable Zi to represent the theory with which
observation i is consistent. Thus, Zi can take one of M
values, i.e., Zi ∈ {1, 2, . . . , M}, depending on which sta-
tistical model generates the i th observation. The data-
generating process is given by,

Yi | Xi , Zi ∼ f Zi (Yi | Xi , �Zi ) (1)

for each i = 1, . . . , N.
Next, assuming the conditional independence across

observations given the covariates and the latent variable,
the model specified in equation (1) yields the following
observed-data likelihood function where the latent vari-
able Zi has been integrated out,

L obs

(
�, �|{Xi , Yi }N

i=1

)
=

N∏
i = 1

{
M∑

m = 1

�m fm(Yi |Xi , �m)

}
.

(2)

In this equation, �m = Pr(Zi = m) represents the pop-
ulation proportion of observations generated by the-
ory m with

∑M
m = 1 �m = 1 and �m > 0 for each m,

� = {�m}M
m = 1 is the set of all model parameters, and

� = {�m}M
m = 1 is the set of all model probabilities. The
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parameter �m can be interpreted as one measure of the
overall performance of theory m.

The mixture model does not necessarily “assume”
each observation is implied by one and only one of the
rival theories under consideration. An alternative and
more general interpretation of the above mixture model,
as seen clearly from equation (2), is that each observa-
tion is implied by a weighted combination of the rival
theories where the relative weights are represented by
�m. The distinction between these two interpretations
is not important when fitting the mixture model be-
cause the data cannot distinguish them, but as discussed
later, it becomes crucial when using the statistical test we
propose.

As mentioned earlier, finite mixture models can be
extended to determine the conditions under which a
particular theory applies. In the example given earlier,
the level of factor specificity in the national econ-
omy determined the relative applicability of the Stolper-
Samuelson and Ricardo-Viner models. Such variables can
be easily incorporated in the finite mixture modeling
framework. This is done by directly modeling the prob-
ability that an observation is consistent with theory m,
i.e., �m, as a function of the observed theory-predicting
variables, Wi (note that Wi may overlap with Xi ), in the
following manner,

Pr(Zi = m | Wi ) = �m(Wi , �m), (3)

where �m is a vector of unknown model parameters. If
Wi turns out to be a powerful predictor, then we may
conclude that the applicability of rival theories depends
on this variable. In practice, the multinomial logistic re-
gression is often used for modeling this probability. How-
ever, more flexible models such as the multinomial probit
model (Imai and van Dyk 2005) and the semiparametric
multinomial logit model can also be used to model the
relationship between Zi and Wi (see the first section of
the supporting materials).

Estimation and Inference. Estimation and inference
can proceed by either a frequentist approach of max-
imizing the observed-data likelihood function or a
Bayesian approach of sampling from the posterior dis-
tribution after specifying prior distributions. To obtain
the maximum likelihood estimates, the Expectation-
Maximization (EM) algorithm (Dempster, Laird, and
Rubin 1997), an iterative numerical optimization algo-
rithm consisting of the expectation (or E) step and the
maximization (or M) step, can be applied to the following
complete-data log-likelihood function, which is derived

by assuming that Zi is observed,

lcom

(
�, �|{Xi , Yi , Zi }N

i=1

)
=

N∑
i=1

M∑
m=1

1{Zi = m}{log �m + log fm(Yi |Xi , �m)}.
(4)

Then, the E-step will compute the conditional expectation
of the latent variable Zi given the observed data and the
values of parameters at the previous iteration. This is
given by,

Q
(
�, �|�(t−1), �(t−1), {Xi , Yi , Zi }N

i=1

)
=

N∑
i=1

M∑
m = 1

� (t−1)
i,m {log �m + log fm(Yi |Xi , �m)},

(5)

where the conditional expectation has the following ex-
pression,

� (t−1)
i,m = Pr

(
Zi = m |�(t−1), �(t−1), {Xi , Yi }N

i=1

)
= �(t−1)

m fm(Yi |Xi , �m)∑M
m′=1 �(t−1)

m′ fm′(Yi |Xi , �m′)
. (6)

This parameter has an intuitive interpretation because it
represents the posterior probability (evaluated at the cur-
rent values of parameters) that observation i arises from
the statistical model implied by theory m. In other words,
�i,m represents the degree to which a specific observation
is consistent with each theory. Later, we use the estimate
of this probability to construct a list of observations that
are statistically significantly consistent with each theory.

After the E-step, the M-step maximizes the function
defined in equation (5). This step can be achieved by sep-
arately maximizing the weighted log-likelihood function
for each model, i.e., fm(y | x, �m), where the weight is
given by � (t−1)

i,m . This is again intuitive because the weight
for an observation is greater when fitting the statistical
model with which this observation is consistent. The up-
dated estimate of �m can then be obtained by averaging
� (t−1)

i,m across all observations,

�(t)
m = 1

N

N∑
i=1

� (t−1)
i,m . (7)

This step confirms the notion that �m represents a mea-
sure of the overall performance of theory m while �i,m

measures the consistency between a specific observation
and a particular theory.

When �m is modeled as a function of covariates
as in equation (3), then maximizing the weighted log-
likelihood function (based on the multinomial logit
regression, for example) will give the updated estimate
of model parameters �m. While the use of a parametric
model means that the relationship given in equation (7)
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no longer holds, the “averaging” of �i,m is still used to es-
timate �m(Wi , �m) because �i,m is used as a weight when
fitting the model.10

The E-step and M-step are repeated until conver-
gence. The advantage of the EM algorithm is its nu-
merical stability (each iteration increases the observed-
data likelihood function in equation (2)) and its rela-
tively straightforward implementation (the M-step can
be implemented through successive fitting of standard
statistical models with the weighted likelihood function).
The disadvantage is that convergence can be slow and
standard errors must be computed separately (bootstrap
or the numerical estimation of the Hessian matrix can
provide approximate standard errors for all parameters
including �m).

Alternatively, Bayesian inference can be applied to
finite mixture models. Here, the standard approach is
to use the Markov chain Monte Carlo (MCMC) algo-
rithm with data augmentation where the latent variable
Zi is sampled along with model parameters. Bayesian in-
ference requires the specification of prior distributions.
For example, Dirichlet distribution is often used as the
prior distribution for �m. Given the prior distribution,
the MCMC algorithm takes the following general form,

1. Sample Zi given the current values of all parame-
ters with the following probability,

Pr
(

Z(t)
i = m | �(t−1), �(t−1), {Yi , Xi }N

i=1

)
= � (t−1)

i,m ∝ �(t−1)
m fm

(
Yi |Xi , �(t−1)

m

)
, (8)

for i = 1, . . . , N and m = 1, . . . , M.
2. Given Z(t)

i , sample all parameters.
(a) Given the subset of the data with Z(t)

i = m, update
�m using the standard MCMC algorithm for this
particular model.

(b) Update �m using the standard MCMC algorithm.
For example, if the Dirichlet distribution is used

as the prior distribution, then we have,(
�(t)

1 , . . . , �(t)
M

)
∼ Dirichlet(

s1 +
N∑

i=1

1{Zi = 1}, . . . , s M +
N∑

i=1

1{Zi = M}
)

,

(9)

10The introduction of the covariates Wi does not alter the basic
relationship between �m and �i,m. To see this clearly, consider the
following setup. Suppose that Wi is discrete and we employ a non-
parametric model for �m(Wi , �m). This can be done by fitting the
saturated model, which includes indicator variables for all possible
values of Wi . Then, for any w, the estimate of �m(w, �m) can be ob-
tained by computing the mean value of �i,m among the observations
which have this specific covariate value Wi = w. That is, �m(w, �m)
still represents the population proportion of observations gener-
ated by theory m within the subpopulation of observations with
Wi = w and equation (7) holds within each of these strata.

where (s1, . . . , s M) is the vector of Dirichlet prior
parameters.

Again, the advantage of this MCMC algorithm is its sim-
ple implementation and ability to produce uncertainty
estimates of all parameters including �m. In particular,
standard MCMC algorithms for each of the submodels
can be used to sample parameters from their joint poste-
rior distribution.

Finally, note that fitting mixture models can be com-
putationally difficult given that the likelihood often con-
tains multiple modes, which may pose problems for the
EM algorithm. The mixing of the standard MCMC al-
gorithm can also be poor. Thus, it is important to check
the convergence carefully and run multiple independent
chains with overdispersed starting values (Gelman et al.,
2004).

Grouped Observations. In some situations, multiple
observations are grouped and researchers may wish to
assume that all observations of one group arise from the
same statistical model implied by either a particular the-
ory or more generally from the same weighted combina-
tion of statistical models under investigation. For exam-
ple, multiple observations may be collected over time for
each individual in a study, and all observations from one
individual are assumed to be consistent with one of the
competing theories or a particular weighted combination
of these theories. In the trade policy example discussed
earlier, it may be reasonable to assume that all votes on
a particular bill are generated by a single theory because
they all share the same level of factor mobility.

In such a situation, finite mixture models can be
formulated as,

Yi j |Xi j , Zi ∼ f Zi (Yi j |Xi j , �Zi ), (10)

for i = 1, . . . , N and j = 1, . . . , J i where the latent vari-
able Zi is indexed by group i alone while both the out-
come and the covariates are observed J i times for a given
group i . As specified in equation (3), one may model the
conditions under which a particular theory applies using
a vector of covariates observed at group level, Wi , which
may be a function of Xi j .

We note that when the number of groups is small,
the parameter �m in �m(Wi , �m) may not be precisely
estimated. On the other hand, this grouping approach
may result in a greater posterior probability that each
group is consistent with a particular theory because mul-
tiple observations for each group provide more informa-
tion about the relative appropriateness of each theory. To
see this formally, note that the E-step of the EM algo-
rithm is given by calculating the following conditional
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expectation,

� (t−1)
i,m = �(t−1)

m

∏J i
j=1 fm(Yi j |Xi j , �m)∑M

m′=1 �(t−1)
m′

∏J i
j=1 fm′(Yi j |Xi j , �m′)

(11)

instead of equation (6) where the multiplication of den-
sities can yield a greater discrimination power across dif-
ferent theories.11

Calculating Usual Quantities of Interest. Along with
�m and �i,m, one may also be interested in calculating
usual quantities of interest such as predicted and expected
values under finite mixture models. To do this, given the
specified values of the observed covariates, i.e., Xi and
Wi if the mixing probability �m is modeled as a function
of Wi , estimate the quantities of interest under each of
the competing models as well as �m for each m. Then,
the weighted average of these estimates where the weights
are given by the estimated values of �m represents the
quantity of interest under the mixture model. To account
for the estimation uncertainty, standard methods such
as bootstrap, Monte Carlo approximation (King et al.,
2000), and Bayesian simulation can be applied to calcu-
late confidence intervals and standard errors. Note that
it is important to account for the estimation uncertainty
associated with the mixing probability �m as well as other
model parameters.

Identification of Observations Consistent
with Each Theory

One advantage of the proposed mixture modeling ap-
proach is its ability to yield a list of observations for which
researchers have sufficiently strong evidence that they are
consistent with one of the competing theories. To do this,
we focus on the posterior probability, �i,m, that observa-
tion i is consistent with theory m. This parameter can
be estimated as part of either the EM algorithm or the
MCMC algorithm (given in equations (6) and (8), re-
spectively, or equation (11) in the case of grouped obser-
vations). Our proposal is to apply a prespecified threshold
�m and call observation i statistically significantly consis-
tent with theory m if its corresponding probability is
greater than this threshold, i.e., �̂i,m > �m.

How shall we choose an optimal value of �m? A naive
selection of the value of �m will result in a list with many
falsely classified observations due to the well-known mul-

11Similarly, in the MCMC algorithm, the conditional posterior for
�i,m is proportional to �(t−1)

m

∏J i
j=1 fm(Yi j |Xi j , �m) rather than what

is given in equation (8).

tiple testing problem of false positives. For example, sup-
pose that we conduct m independent hypothesis tests with
the conventional 5% significance level. Even when the null
hypothesis is true in all cases, the probability that at least
one null hypothesis is falsely rejected increases rapidly
with m; it equals 0.4 ≈ 1 − 0.9510 when m = 10.

Thus, we propose to construct the longest list pos-
sible while at the same time controlling for the expected
proportion of incorrect classifications on the resulting
list. This can be done by applying the key insight from
the fast-growing statistical literature on multiple testing.
Specifically, for each theory m, we choose the smallest
value of �m (so that we can include as many observations
on the list as possible) while ensuring that the posterior
expected value of false discovery rate on the resulting list
does not exceed a certain threshold �m.12 The value of �m

needs to be selected by a researcher a priori. For example,
we may choose �m = 0.05. This strategy yields the fol-
lowing expression for the optimal value of �m under the
proposed criterion (see Genovese and Wasserman 2003;
Newton et al., 2004; Storey 2003),

�∗
m = inf{
�m :

∑N
i = 1(1 − �̂i,m)1{�̂i,m ≥ �m}∑N

i=1 1{�̂i,m ≥ �m}+∏N
i=1 1{�̂i,m < �m} ≤ �m

}
,

(12)

where the numerator represents the posterior expected
number of falsely classified observations on the resulting
list and the denominator represents the total number of
observations on the list (the second term denominator
avoids the division by zero).

Alternatively, we can obtain the optimal threshold
applicable to all theories by controlling the expected false
discovery rate across all lists, which yields the follow-
ing thresholding formula for a single value of � that is
applicable to all rival theories,

�∗ = inf{
� :

∑N
i=1

∑M
m=1(1 − �̂i,m)1{�̂i,m ≥ �}∑N

i=1

∑M
m=1 1{�̂i,m ≥ �}+∏N

i=1

∏M
m=1 1{�̂i,m < �}

≤ �

}
. (13)

Together, this provides a principled way of identifying ob-
servations consistent with each of the competing theories
under investigation.

12False discovery rate is known as FDR due to Benjamini (1995).
See Ho and Imai (2008) for the first application of the FDR method
in political science.
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We emphasize that this test makes sense only if re-
searchers interpret the mixture model as generating each
observation from one rival theory. Thus, researchers who
believe that each observation is implied by a weighted
combination of all rival theories may not employ this test.
Even in this case, however, �i,m still represents the degree
to which observation i is consistent with theory m. Re-
gardless of which interpretation they adopt, researchers
can also measure the overall performance of rival theories,
the topic to which we now turn.

Measuring the Overall Performance of Rival
Theories

Finally, we propose two ways to formally assess the over-
all performance of each theory. First, we can estimate the
population proportion of observations consistent with
each theory. For each theory m, the estimate of �m repre-
sents this proportion and either its maximum likelihood
or Bayesian estimate is obtained as a result of the EM or
MCMC algorithm. Alternatively, �m can be interpreted as
the average degree to which observations are consistent
with one of the competing theories. When �m is mod-
eled as a function of observed covariates, one can use the
expected sample proportion of observations consistent
with each theory. This measure can be calculated as the
average of �̂i,m across all observations in the data, i.e.,∑N

i=1 �̂i,m/N.
In addition, if we assume that each observation is

consistent with only one theory, we may use the number
of observations that are identified as statistically signifi-
cantly consistent with one of the competing theories as
a measure of overall performance. The idea is to focus
on the observations for which we have strong evidence
rather than to construct a measure by including ambigu-
ous cases. In particular, the overall performance of a com-
peting theory can be measured with the sample propor-
tion of observations statistically significantly consistent
with the theory. This measure is attractive because the
observations for which the value of �̂i,m is neither close to
zero or one may correspond to the cases explained by a
theory other than those included in the mixture model.

Implementation in Statistical Software

A straightforward way to estimate finite mixture models
for comparative theory testing is to use flexmix (Grün
and Leisch, 2008a), which is an add-on package freely

available for the statistical software R.13 The flexmix
package uses the EM algorithm to obtain the maximum
likelihood estimates for a wide range of mixtures of re-
gression models. Along with the replication code and data
for this article, we provide an example syntax below so
that others can use it as a template.

If researchers are capable of simple statistical pro-
gramming, it is also possible to estimate finite mixture
models that are not available in the existing software.
We provide such examples in a later section (bivariate
probit regression model) and the supporting materials
(semiparametric logistic regression model). Such an ex-
tension is straightforward because we can rely upon the
existing functionalities within the general framework of
finite mixture models. Similarly, if researchers wish to
implement Bayesian finite mixture models, they can take
advantage of the existing MCMC algorithm implementa-
tion, including the ones available in the MCMCpack pack-
age (Martin, Qunn, and Park 2009), for fitting various
models.

Comparison with the Other Common
Approaches

Next, we briefly compare the proposed mixture model-
ing approach with some of the alternative methods often
used by applied researchers. Perhaps the most com-
mon approach to empirical testing of competing theo-
ries is to construct a regression model that encompasses
all relevant theories and then examine the magnitude
and statistical significance of coefficients correspond-
ing to each theory. Achen (2005) criticizes this wide-
spread approach as atheoretical and calls it a “garbage-
can regression” because no single theory can justify the
model specification of such regressions with many ex-
planatory variables. A number of other scholars share
this concern (e.g., Braumoeller 2003; Clarke 2000, 2007b;
Gordon and Smith 2004; Granato and Scioli 2004).

Parsimony is also regarded by many social scientists
as an important criterion for theory development. For
example, Friedman states, “A hypothesis is important if
it ‘explains’ much by little, that is, if it abstracts the com-
mon and crucial elements from the mass of complex and
detailed circumstances surrounding the phenomena to
be explained and permits valid predictions on the basis
of them alone” (1966, 14). The mixture modeling ap-
proach is consistent with this view. Rather than fitting a
regression model with many covariates which encompass

13There also exists a STATA module, called FMM, to fit finite mixture
models, but its capability is currently quite limited for the purpose
of comparative theory testing.
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all theories under consideration, it allows for empirical
testing of several parsimonious statistical models, each of
which is justified by a particular theory.

Political scientists who have abandoned the “garbage-
can” approach have used various model selection meth-
ods to test competing theories. Popular methods include
Bayesian information criteria, the Vuong test (Vuong
1989), the J test (Davidson and MacKinnon 1981), and
the Clarke test (Clarke 2007a). These methods are useful
because they enable the comparison of two non-nested
models (Clarke 2000). Indeed, some of the methods share
the same motivation as the mixture modeling approach.

In particular, the J test, which is used by Hiscox
(2002) in the application described in an earlier section,
is based on the following mixture setup with the mixing
probability �,

Yi = (1 − �) f (Xi , �) + �g (Xi , 	) + 
i , (14)

where the null hypothesis, H0 : Yi = f (Xi , �) + 
i ,
is tested against the alternative hypothesis, H1 : Yi =
g (Xi , 	) + 
i . Under this setup, the statistical test is con-
ducted to see whether � is equal to zero or not (if it is, the
null hypothesis is retained). Unlike the mixture approach,
therefore, it is difficult to use the covariates Wi to model
the mixing probability, i.e., �(Wi ). In addition, the J test
does not allow researchers to make inferences about the
applicability of rival theories to each observation in the
sample. Finally, in order for the J test to be applicable,
one needs to be able to write a model as in the follow-
ing form, Yi = h(Xi , �) + 
i , for a possibly nonlinear
function h(· , ·) (Davidson and MacKinnon 1981).14 In
contrast, finite mixture models can incorporate virtually
all of the likelihood-based models.

More generally, a fundamental difference between the
mixture modeling approach and the standard model se-
lection methods is that the latter hypothesize one theory
applies to all observations, whereas the former allows for
competing theories to coexist. In the presence of theoret-
ical heterogeneity, standard model selection procedures
may yield an ambiguous conclusion (appropriately so!).
In contrast, the mixture modeling approach can quan-
tify the degree of such heterogeneity and identify the
conditions under which each theory applies, which fa-
cilitates further theoretical development. This difference
is evident in the mixture setup of the J test given in
equation (14) where the test is conducted with the null
hypothesis of � = 0 against the alternative hypothesis
� = 1, ignoring the possibility that � may take a value

14Nevertheless, applied researchers often use the J test for logistic
regression models and others that cannot be written in this form
(see Collier and Hoeffler 2004; Hiscox 2002; Ladewig 2006, for
recent examples).

other than 0 and 1. Thus, unless one theory applies to
the entire population, for the purpose of testing alterna-
tive theories, mixture modeling is more appropriate than
standard model selection procedures.15

Another general problem of standard model selection
procedures is the potential bias arising from the fact that
the usual standard errors do not incorporate the uncer-
tainty concerning model selection because they are cal-
culated assuming that a particular model is correct. This
means that since any model selection procedure yields
false positives, the standard errors associated with the es-
timated parameters of the selected model are inaccurate
and often too small (see, e.g., Freedman, 1983; Freedman,
Navidi, and Peters, 1988). In contrast, mixture models
take into account all the estimation uncertainty includ-
ing the one concerning the applicability of each model to
specific observations.

Finite mixture models are similar to random coeffi-
cient models (also known as multilevel models), which
are essentially a generalization of models with interac-
tion terms (e.g., Beck and Katz 2007; Gelman and Hill
2007). For example, both methods can easily incorporate
grouping of observations that naturally arise in substan-
tive problems. This is difficult to do within the frame-
work of standard model selection procedures. However,
several notable differences exist. While random coeffi-
cient models account for theoretical heterogeneity within
a single-regression framework by varying coefficients
across groups of observations, finite mixture models ex-
plicitly use a different regression model for each theory
and yield both overall and observation-specific measures
of different theories’ explanatory power. Another differ-
ence is that whereas standard random coefficient models
require, a priori, the specification of groups across which
coefficients are allowed to vary, finite mixture models
use the data to decide which group (or theory) each
observation belongs to. Thus, we argue that for the pur-
pose of empirical testing of competing theories, finite
mixture models are more appropriate than random coef-
ficient models.

Finally, Bayesian model averaging offers an approach
that is conceptually quite similar to finite mixture mod-
eling (see Hoeting et al. 1999; Imai and King 2004). The
idea is to build a final model by computing the weighted
average of multiple models according to the Bayes fac-
tor of each model. Like mixture models, this method
therefore accounts for model uncertainty and avoids the
preliminary testing problem of standard model selection

15Even in this case, the mixture model is applicable because it will
estimate �m to be close to zero for the theories that completely lack
explanatory power.
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methods discussed above. Nevertheless, there are impor-
tant differences. Aside from the fact that it is applica-
ble only within the framework of Bayesian inference,
Bayesian model averaging focuses on the overall assess-
ment of competing theories and the improvement of pre-
diction capability by combining multiple models. In con-
trast, finite mixture models allow researchers to explore
the conditions under which each theory is applicable and
identify a set of observations that are consistent with a
specific theory. It is also much easier to group observa-
tions for each theory using the clustering formulation
discussed earlier.

Simulation Studies

In this section, we conduct simulation studies to explore
the conditions under which the proposed method works
(or does not work) well. We investigate cases with two
and three competing theories and also compare the re-
sults with other common procedures. In general, we find,
as expected, that more information in the data (e.g., larger
sample size, continuous outcome instead of binary out-
come) improves the performance of mixture models.

Two-Theory Mixture Model Simulation

We begin with a simple data-generation process with two
competing regression models, each of which consists of
a different covariate and an intercept. These two covari-
ates are sampled independently from a bivariate normal
distribution with zero mean, unit variances, and corre-
lation equal to 0.5. We use a binary logistic regression
with one theory-predicting variable, which is indepen-
dently sampled from normal distribution with mean 10
and variance 2.16 Given this setup, we vary the logit co-
efficients so that the population proportion of observa-
tions consistent with Model 1 ranges from 0.1 to 0.9.
Finally, two sets of outcome variables are generated. The
continuous outcome variable is sampled from a linear
regression with the standard normal variate error while
the binary outcome is generated according to the logistic
regression. The results are based on 1,000 Monte Carlo
experiments.

The four left plots in Figure 1 show the estimated
proportion of observations consistent with Model 1 �̂1

16We have also examined the situation where the theory-predicting
variable is correlated with other covariates. This changes the
results relatively little except for slightly decreasing the number
of observations that get classified to one of the models.

(the vertical axis) against their true values �1 (horizon-
tal axis) for eight different simulation settings; sample
size is set to either 1,000 (solid triangles with dashed
lines) or 5,000 (solid circles with solid lines), and the
model is either the linear regression for continuous out-
come variables (first column) or binary logistic regression
for dichotomous outcomes (second column), with (top
row) or without (bottom row) theory-predicting vari-
ables. The results show that for both continuous and
binary outcomes, the mixture model approach recov-
ers the true proportion of observations consistent with
each theory. The model works somewhat better when
the outcome is continuous and when the sample size is
larger.

We next examine the performance of the proposed
classification method for identifying observations that
are statistically significantly consistent with each the-
ory. The right four plots in Figure 1 show the classifi-
cation success rates of the proposed method. Each plot
of the two right columns uses the same simulation setup
as the corresponding plot in the two left columns. We
set the false discovery rate to � = 0.1, which means that
if the method is working appropriately, we would ex-
pect the classification success rates to be approximately
90%.

Again, the results show that the proposed method
works best when the data are most informative. The best
performance is obtained when the outcome variable is
continuous with the large sample size. In the binary out-
come case, the proposed method has larger classification
error than its nominal rate, but the performance sig-
nificantly improves when the sample size is larger. In
addition, although not shown in the plots, the num-
ber of classified observations increases along with the
amount of information. For example, simulations with
a binary outcome and no theory-predicting variable of-
ten had less than 20% of observations classified to either
theory, whereas simulations with a continuous outcome
and theory-predicting variable regularly had greater than
50% of observations classified.

Finally, we compare the proposed method of classi-
fication with the two alternative methods—the Bayesian
information criteria and the Vuong test. Figure 1 of the
supporting materials presents the proportion of times
when Model 1 is viewed as a better model according to
these methods. As expected, this proportion becomes
larger as the number of observations consistent with
Model 1 increases. However, this result is not comfort-
ing when all observations do not come from a sin-
gle theory, in which case it is misleading to conclude
from these methods one model completely dominates the
other.
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FIGURE 1 Estimated Population Proportion of Observations Consistent with Model 1 (four left
plots) and Classification Success Rates (four right plots) in the Two-Theory Mixture
Model Simulation Study

Note: The results of eight simulations are reported in the figure; sample size is set to either 1,000 (solid triangles with dashed lines) or
5,000 (solid circles with solid lines), the model is either the linear regression for continuous outcome variables (first and third columns)
or binary logistic regression for dichotomous outcomes (second and fourth columns), and with (top row) or without (bottom row) the
theory-predicting variable. In the four left plots, the horizontal axis represents the true proportion of observations consistent with Model
1, �1, while the vertical axis represents the estimated proportion, �̂1. Solid symbols indicate the average of estimates and vertical lines
represent the range from 5 percentile to 95 percentile of the sampling distribution of �̂1. The expected false discovery rate is set to � = 0.1.
The vertical axis represents the proportion of successful classification among the observations that are classified to either theory. Since
this classification success rate equals 1 minus false discovery rate, we should expect the proposed procedure to give a classification success
rate approximately 0.9 (indicated by blue solid horizontal line) when it is working appropriately. The eight plots together show that the
proposed method performs better when the outcome variable is continuous and the sample size is larger.

Three-Theory Mixture Model Simulation

Next, we examine the performance of the mixture model
with three competing theories. The simulation setup is
nearly identical to the above case with two competing
theories. First, we sample three covariates (one for each
theory) from a multivariate standard normal distribution
with all pair-wise correlations set to 0.5. Next, each ob-
servation is assigned to one of the models according to
the predetermined proportions, which range from 0.2 to
0.8 for Model 1. This step is achieved by fixing coeffi-
cients to certain values in the multinomial logit model.
As before, we consider two sample sizes (1,000 and 5,000),
two outcome variable types (continuous and binary), and
without a theory-predicting variable.17

17We also conducted simulations with a theory-predicting variable
and found a pattern similar to the one in the two-theory simulation.
The results are omitted due to the space constraint.

The results are based on 1,000 Monte Carlo simu-
lations and are presented in Figure 2, whose plots are
formatted in the manner identical to those in the up-
per row of Figure 1. The plots reveal a pattern similar
to the results for the two-theory simulation studies pre-
sented above. The proposed method performs best when
the outcome variable is continuous and the sample size
is large. The direct comparison between two-theory and
three-theory simulations is difficult because the models
are different, but the simulation results suggest that the
observed pattern is similar between the two scenarios.

Empirical Results

In this section, we apply the proposed mixture model-
ing approach to the motivating empirical example con-
cerning competing theories of trade policy preferences
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FIGURE 2 Estimated Population Proportion of Observations Consistent with Model 1 (two left
plots) and Classification Success Rates (two right plots) without a Theory-Predicting
Variable in the Three-Theory Mixture Model Simulation Study
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Note: The format of these plots is identical to those given in the upper row of Figure 1. See its caption for details.

introduced in an earlier section. We also test three com-
peting theories of democratic peace by revisiting the work
of Huth and Allee (2002).

Competing Theories of Trade Policy
Preferences

Background and Data. The data set Hiscox (2002) col-
lected spans over 150 years and contains the information
about roll-call voting regarding 26 and 29 trade bills in
the U.S. House and Senate, respectively. Each bill is coded
as either protectionist or protrade. The outcome variable,
a vote, is coded 1 if a legislator votes on a particular bill
against liberalization and 0 if the legislator votes for. The
data set also contains covariates regarding the factoral and
industrial makeup of each state, which operationalize the
two competing theories. For the Stolper-Samuelson (SS)
theory, Hiscox codes the variable profit as state-level
measures of profits, the variable manufacture as em-
ployment in manufacturing, and the variable farm as
agricultural production.18 For the Ricardo-Viner (RV)
model, Hiscox uses the measures of the export and
import orientation of a state, export and import,
respectively.19

Finally, the data contain the national-level measure
of factor specificity, which is the key theory-predicting

18Specifically, these three measures refer to profits earned by capital
in manufacturing (value-added minus wage payments) as a frac-
tion of the state income, total employment in manufacturing as a
proportion of each state’s population, and total value of agricultural
production as a fraction of state income, respectively.

19They are measured as total production in the 10 top export and
import competing industries as a proportion of the state income,
respectively.

variable. Hiscox was unable to collect a single measure
of specificity over the entire period. Instead, he uses var-
ious measures and shows that all trend closely together
over time in terms of the coefficient of variation across
industries (see Figures 1 and 2 of Hiscox 2002). To create
a single measure of factor specificity for each year, we
use the coefficient of variation based on one of the two
following measures given their availability: the annual
earnings in 20 industries and the annual earnings of pro-
ductive workers measures.20 As can be seen from Figure 1
of Hiscox (2002), the resulting measurefactor spans the
entire period and tracks other measures well. Thus, this
variable takes a greater value when factors are relatively
specific (i.e., immobile) and a smaller value when factors
are relatively nonspecific.

Statistical Analysis. We begin our analysis by estimat-
ing a mixture model of two logistic regression models, one
with the three covariates corresponding to the SS model as
main effects and the other with the three covariates corre-
sponding to the RV model as main effects. Furthermore,
instead of using fixed effects for each logistic regression
as done in Hiscox (2002), we use a mixture model with
clustering where all votes for a particular trade bill are as-
sumed to be consistent with the same theory. This is a rea-
sonable approach given that factor specificity is measured
and operates at the level of national economy. Finally, we
model the mixing probability (or the population propor-
tion of observations consistent with the RV model), �,

20Not surprisingly, alternative combinations of measures to cover
the entire time period produce similar results. Hiscox was also not
able to collect the factor specificity data for every year in which
there was a vote. For these years, we linearly impute the missing
data as a rough approximation.
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using a logistic regression with factor specificity variable
as the only covariate. Under the maintained hypothesis,
we expect the coefficient for this variable to be positive
since a greater level of factor specificity is more likely
to yield support for the RV model. In sum, using our
previous notation, we have the mixture model with the
following components,

fSS(Yij | Xij, �SS) = logit−1(�0 + �1profitij

+ �2manufactureij + �3farmij)

fRV(Yij | Xij, �RV) = logit−1(	0 + 	1exportij

+ 	2importij)

�RV(Wj , �RV) = logit−1(�0 + �1factor j )

where i and j index votes and bills, respectively.
We estimate this model using the R package,

flexmix, and here we provide a syntax to illustrate the
simplicity of implementation in the hope that it may
serve as a template for other researchers. First, the ex-
planatory variables for each model and nesting structure
must be specified. In this case, the models are completely
non-nested except that both models include the intercept.
Thus, we specify two separate formulas in the following
manner,

model<- FLXMRglmfix(family = "binomial",
nested = list(k = c(1, 1),
formula = c(~ profit + manufacture
+farm,~ export + import)))

where family specifies the logistic (default link) regres-
sion for binary outcome, k within the nested argument
specifies two models being fitted, each of which has one
component, and formula tells which variables belong to
each model.

Next, we specify the outcome variable vote, whether
all votes for the same bill should be clustered, and the
model for how specificity influences the mixture proba-
bilities. In this step, we pass the model object produced
in the first step to the function stepFlexmix(), which
estimates the model using the EM algorithm with differ-
ent random starting values to avoid local maxima. The
syntax is as follows,

result<- stepFlexmix(cbind(vote, 1 - vote)~
1|bill, k = 2, model = model,
concomitant = FLXPmultinom(factor),
data = Hiscox, nrep = 20)

where|bill represents a standard R syntax for cluster-
ing for each bill, k is the number of competing mod-
els, concomitant specifies the logistic regression model

with factor as the sole covariate to model the mixing
probabilities, data is the data frame, and nrep specifies
the total number of EM algorithm runs with different
starting values.

Figure 3 plots the estimated population proportion of
observations consistent with the RV model, �̂, across the
range of factor specificity variable. This serves as an overall
measure of applicability of each theory. For both House
and Senate, the point estimates are consistent with the
hypothesis that a greater level of factor specificity makes
it more likely for legislators’ votes to be explained by the
RV model. The fact that the estimated probability ranges
from 0.3 to 0.5 implies that factor specificity only partially
explains the theoretical heterogeneity, and there may exist
other important determinants of the applicability of each
theory.

While the point estimates are consistent, the statistical
insignificance of the factor specificity variable and the
resulting wide confidence intervals in the figure suggest
that the evidence for Hiscox’s hypothesis is rather weak.
This does not necessarily refute his hypothesis because the
statistical power is low (the data contain only 26 and 29
bills for the House and Senate, respectively). On the other
hand, the fact that the model was able to classify many
bills with high probabilities means that legislative voting
on many of these bills can be explained well by either the
RV or SS variables. In sum, our reanalysis suggests that
these two trade models have high explanatory power, but
a more precise test of Hiscox’s argument requires a larger
data set with more bills.

Next, we illustrate the method described earlier and
identify the list of trade bills, which are statistically signif-
icantly consistent with each of the rival theories. Here, we
assume that all votes for any given bill are consistent with
the same theory. While this assumption is rather strong, it
is similar to that of the original analysis where all votes in
one period are hypothesized to be consistent with either
the SS or RV model. In fact, we are able to classify all
bills even when we set the (posterior) expected number
of incorrect classification to be very small, e.g., � = 0.01.
Table 1 of the supporting materials provides the resulting
classification lists of trade bills for each model. Scholars
may use these lists to examine whether quantitative evi-
dence is in agreement with qualitative knowledge about
each trade bill.21

21While the majority of the bills passed within the House and Sen-
ate in a given year are classified as belonging to the same theory
(18/23), there nevertheless exist several instances where this is not
the case (5/23). Such differences might arise from differences in
voting dynamics across the institutions, the particulars of the bills
across the institutions if prior to reconcilement in conference com-
mittee, or limitations in the application of our approach to this
particular example.
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FIGURE 3 Estimated Probability of Votes for a Bill Being Consistent
with the Ricardo-Viner Model as a Function of Factor
Specificity
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Note: Solid line is the estimated probability with actual observations indicated by sold circles,
and dashed lines represent 95% confidence intervals based on the Monte Carlo approxima-
tion. Although there is a considerable degree of uncertainty due to the small number of bills,
the positive slopes in the House (the left panel) and Senate (the right panel) are consistent
with the hypothesis that the Ricardo-Viner model rather than the Stolper-Samuelson model
is supported when the level of factor specificity is high.

Comparison with Other Methods. Finally, the mixture
modeling approach also yields estimated model param-
eters for each of the competing theories, i.e., �SS, �RV,
as well as the estimated coefficients on variables that
are used to estimate mixing probabilities, i.e., �RV. In
Table 1, we report these estimates and compare them
to the “garbage-can” regression (the last four columns),
which Achen (2005) and others (e.g., Clarke 2000;
Gordon and Smith 2004) argue should be avoided. Here,
the “garbage-can” regression refers to the single logis-
tic regression, which contains all five variables taken from
both SS and RV models. Following Hiscox’s original anal-
ysis, we also include bill fixed effects in this model.

The table shows that for the mixture modeling ap-
proach, all estimated coefficients of the two models have
expected signs and are statistically significant. For ex-
ample, the estimated coefficient for the farm variable is
negative, implying that states with high levels of agricul-
tural production are more likely to oppose protectionism
as expected under the Stolper-Samuelson model. In con-
trast, in the “garbage-can” regression the coefficients are
considerably smaller and their standard errors are larger
(relative to the size of the coefficients). For example, the
farm variable is not statistically significantly different

from zero both in the House and Senate.22 This suggests
the superior discrimination power of each variable in the
mixture model despite the fact that the “garbage-can”
regression was fit to the entire data.

The results based on the mixture model also improve
upon those reported in the original article. For example,
the application of the J test indicates that the SS model is
selected for the period between 1945 and 1962. However,
Hiscox found that the farm and manufacture vari-
ables in this model have opposite signs than what is pre-
dicted (2002, 603). In contrast, the results of the mixture
model show no such inconsistency. Furthermore, when
the SS model (with bill fixed effects) is fitted to the subset
of votes classified to the RV model given in the second
and fourth columns of Table 1 of the supporting materi-
als, the estimated coefficient for the farm variable has a
positive sign (statistically insignificant in the House and

22We also ran the same “garbage-can” regression model with the
interaction terms between the factor variable and each of the
covariates. The results are somewhat puzzling. The coefficients of
some main effects do not have expected signs, and others are no
longer statistically significantly different from zero. In addition,
some signs of the coefficients for these interaction terms are not in
the expected direction.
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TABLE 1 Parameter Estimates and Their Standard Errors from the Mixture Model for the House and
Senate

Mixture Model “Garbage-can” Model

House Senate House Senate

Models Variables coef. s.e. coef. s.e. coef. s.e. coef. s.e.

Stolper-Samuelson intercept −0.23 0.14 0.02 0.21 0.47 0.12 0.78 0.25
profit −1.60 0.53 −5.69 1.19 −0.93 0.56 −3.58 1.23

manufacture 17.60 1.54 19.79 2.59 10.01 1.11 7.82 2.27
farm −1.33 0.29 −1.27 0.43 −0.14 0.24 −0.03 0.42

Ricardo-Viner intercept −0.61 0.05 −0.83 0.13
import 3.09 0.33 2.53 0.80 1.03 0.34 2.22 0.76
export −0.85 0.16 −2.80 0.77 −1.45 0.14 −2.58 0.36

Mixture Probability intercept −0.39 1.48 −1.60 1.62
factor 0.01 0.06 0.05 0.07

Each model is the logistic regression with model intercepts omitted in order to ease presentation. The first set of models uses the proposed
mixture model approach with bill clustering. The second set is based on a “garbage-can” regression that uses all variables from both
Stolper-Samuelson and Ricardo-Viner models as well as bill fixed effects.

significant in the Senate), which is opposite to what the
SS model predicts. On the other hand, when the model is
fitted separately to the “correct” subset of the trade bills,
then all estimated coefficients are statistically significant
and have the expected sign in both the House and Senate.
This provides evidence supporting the appropriateness of
bill classifications as a whole.

Competing Theories of Democratic Peace

Next, we apply the proposed mixture modeling approach
and test three competing theories of democratic peace.
Specifically, we revisit the work of Huth and Allee (2002),
who empirically test three competing models—the ac-
countability model, the norms model, and the affinity
model. Here, we focus on the military escalation stage
where a defending state has already refused negotiations
and each state in a conflict dyad must choose whether or
not to escalate the dispute.

Background and Data. The original data set consists
of 374 military confrontations between 1919 and 1995
in which a challenging state had initiated a conflict against
a defender. Huth and Allee construct separate dichoto-
mous dependent variables for a challenger and a de-
fender, which equal 1 if a state chose high levels of military
escalation and 0 for low or limited escalation. For each
of the competing models, the authors estimate a bivariate
probit model to allow for correlation between the chal-
lenger’s decision to escalate crisis and the corresponding
decision of the defender.

The accountability model argues that leaders are con-
strained in their ability to use force by domestic political

institutions and threats from rivals. In particular, com-
petitive elections can constrain leaders in a crisis. To op-
erationalize this idea, Huth and Allee use measures of
democracy levels for challenger and defender and inter-
act them with various characteristics of disputes.23 The
norms model emphasizes the role of beliefs held by polit-
ical leaders about how to negotiate and deal with political
conflict. Specifically, the argument is that norms about
domestic bargaining transfer to the international level.
They use a measure of how strong nonviolent norms are
in the state and interact it with several characteristics of
the dispute.24 Finally, the affinity model argues that con-
flict decision making is driven by shared interests and
ideologies. As a measure of similarity, Huth and Allee use
an indicator variable representing whether countries have
the same regime type and another variable indicating if
this similarity measure has changed in the last five years.
In addition, the authors include a set of “realist” control
variables in each of the three models (see Tables 9.4, 9.13,
and 9.19).

Statistical Analysis. Based upon the lack of statisti-
cal significance of the key estimated coefficient and its
wrong sign, Huth and Allee conclude that out of the
three models the affinity model “produced the weakest
results” (2002, 283) and that between the accountability

23They include indicator variables for whether the dispute is a
stalemate, part of an enduring rivalry, if ethnic conationals are
involved in the dispute, whether there is high military risk, and a
measure of the target’s resolve.

24They include a dichotomous variable indicating whether the dis-
pute is a stalemate and another dichotomous variable indicating
whether the state possesses military advantage.
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FIGURE 4 Smoothed Histograms of Estimated Probabilities That
Each Observation Is Consistent with Each Competing
Theory of Democratic Peace, �̂i,m
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Note: Solid vertical lines represent the estimated overall probability that observations are con-
sistent with each model, �̂m. The affinity model receives the greatest support. The estimated
probability for the accountability model is essentially zero for all observations.

and norms model the accountability model was superior
(2002, 286). Here, we formally test the three competing
theories using the proposed mixture modeling approach.
We begin our analysis by fitting the mixture model con-
sisting of Huth and Allee’s three bivariate probit models.25

Figure 4 presents the smoothed histogram of estimated
posterior probabilities that each observation is consistent
with each competing theory, �̂i,m. We find that the affinity
model receives the greatest support where slightly more
than 80% of observations are estimated to be consistent
with this model.26 However, the mixture model shows es-
sentially no support for the accountability model, which
contradicts the original finding. Interestingly, as shown in
Table 2, the estimated coefficients for the other models—
affinity and norms models—from the mixture model are
quite similar, though the coefficients are estimated less
precisely for mixture models. Note that the standard er-
rors on nearly all of the variables are very large, making
inferences about the signs of coefficients inappropriate.
Here, the mixture model is choosing the most parsimo-
nious model. This suggests that the realist control vari-
ables are explaining most of the variation in the outcome
variable.

25The bivariate probit model is not available in the flexmix pack-
age, and hence we have programmed the EM algorithm.

26This conclusion is similar to the one given by Clarke (2008) using
the Friedman test and Bayesian information criteria.

What Can Go Wrong?

What are potential pitfalls of finite mixture models? In this
section, we list several limitations of mixture modeling
and discuss practical recommendations that help applied
researchers avoid them (see also Section 4 of the support-
ing materials for empirical illustration via simulation).
First, the proposed mixture modeling approach provides
one way to assess the relative predictive performance of
rival theories, but like any statistical method, the method
in itself does not solve endogeneity and other fundamen-
tal problems of causal inference in observational studies.
For example, one may estimate causal effects using a mix-
ture model which consists of causal submodels. In such
cases, the inclusion of relevant confounders in each of
the submodels will be required in order to identify causal
effects.

Second, one should not test too many competing
theories at once. Fitting a mixture model demands much
more from the data than fitting each of the submod-
els separately. The fact that each submodel is identified
does not necessarily imply a mixture of all submodels
is identified. Even if a mixture model is identified, like
any statistical modeling, overfitting can be a problem too.
For example, including too many statistical models, es-
pecially the ones that are similar to each other and/or
have many parameters, can lead to inefficient and sen-
sitive inference in a small sample. The data may simply
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TABLE 2 Parameter Estimates and Their Standard Errors for the Affinity and Norms Models from
the Mixture Model and Standard Bivariate Probit Model Used in the Original Analysis by
Huth and Allee (2002)

Mixture Model Huth and Allee

coef. s.e. coef. s.e.

Affinity Model
Challenger

Political Similarity 0.005 0.005 0.005 0.005
Change in Political Similarity 0.003 0.009 0.003 0.007

Defender
Political Similarity −0.204 0.265 −0.233 0.260
Change in Political Similarity 0.784 1.419 0.929 1.330

Norms Model
Challenger

Nonviolent Norms 0.004 0.002 0.004 0.002
Stalemate 0.015 0.027 0.014 0.029
Nonviolent Norms × Stalemate −0.003 0.003 −0.002 0.003
Nonviolent Norms × Military Advantage −0.003 0.002 −0.003 0.002

Defender
Nonviolent Norms 0.047 0.028 0.073 0.023
Stalemate 0.216 0.656 0.283 0.531
Nonviolent Norms × Stalemate −0.004 0.098 −0.001 0.051
Nonviolent Norms × Military Advantage −0.016 0.026 −0.025 0.021

Note: Each model also contains a set of control variables, which are omitted from this table. Standard errors are based upon the
nonparametric bootstrap. The two methods give similar results for both models.

lack enough information to distinguish all models. For
this reason, we recommend that researchers test only two
or three competing theories with typical political science
data sets. Overfitting can also be avoided by making sure
that out-of-sample predictions of mixture models are as
good as their in-sample predictions.

Third, while identification is still possible (see Grün
and Leisch 2008b; Hennig 2000), high correlations across
predictors may reduce the statistical power of mixture
models.27 There may also be a bias toward the selection
of a submodel with a greater number of predictors, es-
pecially when a more parsimonious model generates rel-
atively few observations and/or correlations across pre-
dictors are high (see Section 4 of the supporting mate-
rials).28 We emphasize that definitive theoretical results
about this question do not exist and indeed in one of our
empirical applications, the most parsimonious model is

27Note that most applications of mixture models in the statistical
literature use the same predictors in all submodels. Thus, the sug-
gested use of mixture modeling should have fewer problems than
typical applications.

28Such issues have been reported in the case of the J test (e.g.,
Godfrey and Pesaran 1983).

selected. Unlike other model selection procedures such
as the Bayesian information criteria, however, the mix-
ture model does not explicitly penalize models with a
large number of parameters. Therefore, when using the
proposed approach, substantive theory (rather than sta-
tistical methods) must guide model specification.

Finally, while mixture modeling allows one to model
the conditions under which different theories are applica-
ble, these conditions must be directly derived from the un-
derlying assumptions of each rival theory. This is exactly
the contribution made by Hiscox (2002), who realized
that the relative applicability of Stolper-Samuelson and
Ricardo-Viner depends on their assumption about fac-
tor mobility. Although the inclusion of theory-predicting
variables is appealing for both theoretical and statistical
reasons, this does not mean that one can use any variables
to predict the applicability of rival theories.29 Even if it

29In addition, we emphasize that as observed in our analysis of the
trade policy preference example, the statistical power may be low
for detecting the factors that determine the applicability of each
rival theory, thereby requiring a large sample size.
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avoids the “garbage-can” regression, such an approach
may be condemned as a “garbage-truck” model!30

Concluding Remarks

We have shown that finite mixture models can be used to
effectively conduct empirical testing of competing theo-
ries. Given that the mixture modeling strategy outlined
in this article can accommodate a wide range of statistical
models, we believe that the applicability of the proposed
methodology is potentially high. Although finite mixture
models have a long history in statistics, their main use has
been to make parametric models flexible so that they fit
the data better. We have shown that this methodology can
be used for the empirical testing of competing theories,
which is a central goal of social science research.

One important advantage of the proposed mixture
modeling strategy is its ability to model the conditions
under which different theories are applicable. Any theory
rests upon certain assumptions, without which the theory
is not applicable. However, much of empirical research
takes for granted these assumptions when conducting
theory testing. Evaluating the underlying assumptions is
especially critical when testing rival theories because the
applicability of each theory depends upon the appro-
priateness of different assumptions. With finite mixture
models, researchers can now test a theory as a whole,
including its assumptions, and explore the factors that
determine when each rival theory is applicable. Given
the ease of using finite mixture models, we believe that
more scholars should collect variables like Hiscox’s fac-
tor mobility measure and then use them directly in their
statistical analysis.
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