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Abstract

We characterize optimal taxation of foreign capital and optimal sovereign debt pol-
icy in a small open economy where the government cannot commit to policy, seeks
to insure a risk averse domestic constituency, and is more impatient than the market.
Optimal policy generates long-run cycles in both sovereign debt and foreign direct in-
vestment in an environment in which the first best capital stock is a constant. The
expected tax on capital endogenously varies with the state of the economy and in-
vestment is distorted by more in recessions than in booms amplifying the effect of
shocks. The government’s lack of commitment induces a negative correlation between
investment and the stock of government debt, a “debt overhang” effect. Debt relief is
never Pareto improving and cannot affect the long-run level of investment. Further,
restricting the government to a balanced budget can eliminate the cyclical distortion
of investment.
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participants at several places for comments. We owe a special debt to Ivan Werning, who was particularly
generous with his time and suggestions. We thank Oleg Itshokhi for excellent research assistance.

1



1 Introduction

This paper explores the joint dynamics of sovereign debt and foreign direct investment in a
small open economy. Our analysis brings to the forefront two important political economy
considerations. We follow the seminal work of Thomas and Worrall (1994) in that the gov-
ernment cannot commit, leaving capital and debt exposed to expropriation or repudiation.
However, in Thomas and Worrall (and more generally in Ray (2002)), the government even-
tually accumulates sufficient assets to overcome its lack of commitment. To this environment
we introduce a second prominent political economy implication. Namely, that the risk of
losing office makes the government impatient relative to the market. This simple but em-
pirically relevant change in environment leads to dramatically different long run properties
of the economy.

We show that the combination of the government’s impatience and inability to commit
generates perpetual cycles in both sovereign debt and foreign direct investment in an en-
vironment in which the first best capital stock is a constant. The expected tax on capital
endogenously varies with the state of the economy and investment is distorted by more in
recessions than in booms, amplifying the effect of shocks. The predictions of the model
are consistent with two important phenomena in less developed markets. One is the well
known “debt overhang effect” on investment, where current levels of debt negatively effect
future investment. Second is the rise in expropriation risk during crises in emerging markets
and the depressed level of investment following these crises. We also use our framework to
analyze the effect of budgetary restrictions, recently being considered in countries such as
Chile and Brazil, on the volatility of consumption and investment.

The model has three types of agents. There are risk averse domestic agents who provide
labor inelastically, lack access to financial markets, and do not own capital. There are risk
neutral foreigners who invest capital that is immobile for one period and has an opportunity
cost given by the world interest rate. Lastly, there is the government that implements fiscal
policy on behalf of domestic agents (or a preferred sub-set of agents). Uncertainty is driven
by an i.i.d. stochastic productivity process. The shock can be interpreted as a productivity
shock or a terms of trade shock. This generates a risk that the domestic agents cannot
insure. The government provides insurance to domestic agents by taxing or subsidizing
foreign capitalists and trading a non-contingent bond with international financial markets.
Since the expected marginal product of capital is independent of the shock’s realization, the
first-best capital stock is acyclical. This environment allows us to isolate the role of fiscal
policy in generating investment and debt cycles.

To understand the separate roles of limited commitment and impatience we first consider
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the case with full commitment. If the government could commit, optimal fiscal policy (the
Ramsey solution) does not distort capital in this economy (similar to Judd (1985) and
Chamley (1986)). The combination of state contingent taxes and the bond is equivalent to
the government having access to a complete set of state-contingent assets, as in Zhu (1992),
Judd (1992) and Chari et al. (1994). Under commitment, full insurance is achieved while
maintaining an expected foreign tax of zero. The government exploits the fact that capital
is ex post inelastic and the risk-neutrality of foreign capitalists to transfer capital income
across states. The ex ante elasticity of capital provides the necessary incentive to keep
average tax payments at zero. Importantly, the result that there is no distortion of capital
holds regardless of the government’s discount rate as long as the government can commit.
This emphasizes the importance of limited commitment in generating the key results.

Next, we consider the more empirically relevant case when the government cannot commit
to its promised tax and debt plan. While the sunk nature of capital allows the government
to insure domestic agents, it also tempts the government to renege on tax promises ex
post. Similarly, a government may wish to default on its outstanding debt obligations. We
show that the optimal taxation problem can be written as a constrained optimal contract
between a risk-neutral foreigner (who can commit) and the government (who cannot commit).
An optimal allocation under limited commitment is sustained by prescribing that if the
government deviates on its tax policy or defaults on its debt obligations, foreign investment
will drop to zero, and the country will remain in financial autarky thereafter.

An important feature of the optimal allocation under limited commitment is that when
the government’s participation constraints bind, capital following high income shocks is
strictly greater than capital following low shocks, despite the shocks being i.i.d.. This cyclical
variation in investment arises due to sovereign debt. The strongest temptation to deviate
from the optimal plan arises after receiving the highest income shock. An optimal allocation
then accommodates such temptation by prescribing higher domestic consumption. However,
consumption smoothing implies that it is optimal to increase future domestic consumption
as well, a result that is achieved through a reduction in the stock of sovereign debt. A lower
stock of debt relaxes subsequent participation constraints, allowing higher investment.

If the government discounts the future at the market rate, the model behaves as in
Thomas and Worrall (1994). While investment depends on the realization of output along the
transition, the economy monotonically asymptotes to the first best level of capital and there
are no cycles in the long-run. However we are interested in the case when the government
discounts the future at a higher rate than the market. There are important political economy
reasons, such as the positive probability of loosing office, as in Alesina and Tabellini (1990),
that can justify the higher impatience of the government. In this case capital converges to
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a unique, non-degenerate stationary distribution whose support lies strictly below the first
best. The government’s impatience leads it to bring consumption forward, increasing the
stock of debt and therefore reducing the sustainable level of capital in the future. This is why
capital lies below the first best level in the long run. At the same time, impatience prevents
the accumulation of enough assets to sustain complete risk sharing, leaving consumption
sensitive to shock realizations. Movements in consumption combined with the incentive to
smooth consumption inter-temporally generate corresponding fluctuations in the stock of
debt carried forward. As the level of debt determines the sustainable level of investment,
fluctuations in debt generate corresponding movements in capital. This is why capital is not
constant in the long run.

To clarify the role of the government’s desire to insure domestic agents, we analyze the
role that risk aversion plays in generating long run fluctuations. We show that, depending on
the dispersion of the underlying shock process, the economy with an impatient government
may converge to a degenerate stationary distribution if agents are risk neutral. In this case,
the economy does not fluctuate in the steady state, but instead converges to a constant
capital stock less than the first best level. If agents are risk neutral, there is no gain to
inter-temporal smoothing, but there is a loss from capital volatility due to concavity in the
production function. Efficiency therefore requires that shocks to output are accommodated
through changes to current consumption, rather than changes in debt positions which in-
fluence investment levels. Risk neutrality therefore breaks the inter-temporal link between
shocks today and capital tomorrow stemming from fluctuations in sovereign debt.

We also explore the role of access to sovereign debt markets in generating the investment
cycles. We analyze the situation in which the government is forced to run a balanced budget,
and therefore cannot transfer resources across periods. In this case, distortions to invest-
ment will be independent of the current shock in an i.i.d. environment. Investment may be
distorted, but will be constant. Further, for a discount factor lower than the market rate, it
can be the case that under a balanced budget rule investment is first best and consumption
is constant. Hence, the government’s access to debt markets can increase the volatility of
consumption and the distortion of investment.

A recent quantitative literature has emerged on sovereign debt based on the model of
Eaton and Gersovitz (1982), beginning with the papers of Aguiar and Gopinath (2006)
and Arellano (forthcoming). These models abstract from political economy issues as well
as investment. This paper contributes to this literature by highlighting the important role
that government impatience plays in the joint dynamics of sovereign debt and foreign direct
investment.

The interaction of sovereign debt and investment in the model is consistent with the
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well known debt overhang effect on investment in less developed countries. This negative
effect of accumulated debt on investment has been widely explored starting with the work
of Sachs (1989) and Krugman (1988). In these papers, the level of debt is assumed to be
exogenous, and debt relief is shown to enhance investment and in some cases to generate
a Pareto improvement. Differently, in our model, such cyclical debt overhang effects arise
endogenously due to the limited ability of the government to commit. However, at all times
the optimal allocation generates payoffs on the Pareto frontier under the limited commitment
restriction, and hence debt relief, while benefiting the government, can never generate a
Pareto improvement. Furthermore, the existence of a unique long run distribution implies
that debt relief programs will at most have short-lived effects. The distortions in investment
arise from the lack of commitment of the government and impatience, which are issues that
cannot be resolved through debt relief.

The dynamics of the model are also reminiscent of emerging market crises. As predicted
by the model, governments often allow foreign capital to earn large returns in booms but
confiscate capital income during crises. Moreover, as documented by Calvo et al. (2005),
investment remains persistently depressed following a crisis. The most recent crisis in Ar-
gentina in January 2002 is a dramatic illustration of this phenomenon. Measures of expro-
priation risk for Argentina as calculated by the Heritage Foundation and Fraser Institute
deteriorated sharply. A similar deterioration of property rights is observed in other emerg-
ing market crises, often precipitated by a terms of trade shock or other exogenous drop in
income. Our paper rationalizes such behavior. Several recent studies have documented the
significant pro-cyclicality of fiscal policy in emerging markets (see Gavin and Perotti (1997),
Kaminksy et al. (2004), and Talvi and Vegh (2004)). While quarter-to-quarter fluctuations
in fiscal policy are interesting, we feel our model is particularly relevant for the interaction of
sovereign debt and foreign investment observed at the lower frequency of large crisis episodes.

The paper is organized as follows. Section 2 describes the model environment; Section 3
characterizes the optimal policy under full commitment; Section 4 characterizes the optimal
policy under limited commitment; Section 5 restricts the government to a balanced budget
and explores the role of risk aversion; and Section 6 concludes. The Appendix contains all
proofs.

2 Environment

Time is discrete and runs to infinity. The economy is composed of a government and two
types of agents: domestic agents and foreign capitalists. Domestic agents (or “workers”) are
risk averse and supply inelastically l units of labor every period for a wage w. Variables will
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be expressed in per capita units.
The economy receives a shock z every period. One can interpret the shock as a terms

of trade shock to a developing country’s exports or a productivity shock. The assumptions
underlying the shock process are described below.

Assumption 1. The shock z follows an i.i.d. process and the realizations of z lie in a finite
set Z ⊂ �. Let the highest element of Z be z̄ and the lowest element be z.

Let π(z) denote the associated probability of state z. Let zt = {z0, z1, ...zt} be a history of
shocks up to time t. Denote by π (zt) the probability that zt occurs.

Workers enjoy period utility over consumption in history zt given by U(c(zt)), where
U is a standard utility function defined over non-negative consumption satisfying Inada
conditions with U ′ > 0, U ′′ < 0. Let Umin ≡ U(0). We make the following assumption about
the government’s objective function:

Assumption 2 (Government’s Objective). The government’s objective function is to max-
imize the present discounted utility of the workers, discounted at the rate β ∈ (0, 1):

∞∑
t=0

∑
zt

π(zt)βtU
(
c
(
zt
))
. (1)

The government’s discount factor β plays an important role in the analysis. We discuss the
determinants of the government’s rate of time preference in detail at the end of the section.

We should note that it is not crucial that the government cares equally about all domestic
agents. We could assume that the government maximizes the utility of a subset of agents,
such as political insiders or public employees. The analysis will make clear that our results
extend to these alternative objective functions as long as the favored agents are risk averse
and lack access to capital markets.

Workers provide l units of labor inelastically each period. Moreover, workers do not have
access to financial markets. Their consumption is given by:

c
(
zt
)

= w
(
zt
)
l + T

(
zt
)
, (2)

where T (zt) are transfers received from the government at history zt and w (zt) is the
competitive wage at history zt.

As we will see below, we allow the government to borrow and lend from foreigners on
behalf of workers. If the government implements the workers’ optimal plan, workers and
the government can be considered a single entity. The expositional advantage of separating

6



workers from the government is that in practice it is the government that can tax capital and
not individual workers. Moreover, the government may not implement the workers’ optimal
plan. Rather than exclude workers from asset markets entirely, an alternative assumption
would be that government can observe private savings and has a rich enough set of policy
instruments to implement a consumption plan for workers, as in Kehoe and Perri (2004). In
either case, the important decision problem is that of the government’s, which is the focus
of the analysis below.

There exists a continuum of risk-neutral foreign capitalists who supply capital, but no la-
bor. The foreign capitalists own competitive domestic firms that produce by hiring domestic
labor and using foreign capital. This last assumption is critical: foreign capital is essential
for production in the foreign owned sector. The production function of the foreign owned
domestic firms is of the standard neoclassical form:

y = A(z)f (k, l) ,

where f is constant returns to scale with fk > 0, fkk < 0 and satisfying Inada conditions;
and A is a positive function.

The capitalists have access to financial markets. We assume a small open economy where
the capitalists face the exogenous world interest rate of r. Capital is installed before the shock
and tax rate are realized and cannot be moved until the end of the period. We denote by
k(zt−1) the capital installed at the end of period t−1 to be used at time t. The depreciation
rate is δ. Capital profits (gross of depreciation) of the representative firm are denoted Π (zt),
where

Π
(
zt
)

= A(zt)f
(
k
(
zt−1
)
, l
)
− w

(
zt
)
l.

The government receives an endowment income each period g(z). This captures, for
example, returns to a natural resource endowment sold on the world market. To reflect that
income is not zero absent foreign investment, we assume that g(z) > 0. The government also
taxes capital profits at a linear rate τ (zt) and transfers the proceeds to the workers T (zt).
For the benchmark model, we assume the government can trade a non-contingent bond with
the international financial markets. Let b(zt) denote the outstanding debt of the government
borrowed at history zt and due the next period (which is constant across potential shocks
realized at t+ 1). The government’s budget constraint is:

g(zt) + τ
(
zt
)

Π
(
zt
)

+ b(zt) = T
(
zt
)

+ (1 + r)b(zt−1). (3)

Taking as given a tax rate plan τ (zt), firms maximize after-tax profits net of depreciation
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and discounted at the world interest rate,

E0

[∑
t

( 1
1 + r

)t ((
1− τ

(
zt
))

Π
(
zt
)
− k(zt) + (1− δ)k(zt−1)

)]
.

Profit maximization and labor market clearing imply the following two conditions:

w
(
zt
)

= A(zt)fl
(
k
(
zt−1
)
, l
)
, (4)

and
r + δ =

∑
zt∈Z
π(zt)(1− τ(zt))A(zt)fk

(
k
(
zt−1
)
, l
)
, (5)

where fi denotes the partial derivative of f with respect to i = k, l.
According to equation (5), the expected return to capitalists from investing in the do-

mestic economy net of depreciation should equal the world interest rate r. Given the i.i.d.
assumption regarding the shocks, optimal capital is a constant in a world without taxes. We
denote this first best level of capital by k∗, that is

∑
z∈Z
π(z)A(z)fk(k∗, l) = r + δ.

Let us define the total output of the economy as F (z, k, l):

F (z, k, l) ≡ A(z)f(k, l) + g(z). (6)

We are going to impose the following monotonicity assumption that requires that high values
of z index high shocks; that is, states when total output is high:

Assumption 3. F (z, k, l) is strictly increasing in z for all k > 0 and l > 0.

There is a simple of way of summarizing the constraints (2), (3) and (4). For this, note
that Fi = fi, for i = k, l. Equations (2), (3) and (4) can be combined to obtain:

F
(
zt, k

(
zt−1
)
, l
)
−
(
1− τ

(
zt
))
Fk
(
zt, k

(
zt−1
)
, l
)
k
(
zt−1
)

+ b(zt)

= c
(
zt
)

+ (1 + r)b(zt−1), (7)

where have used the constant-returns-to-scale assumption (specifically, f = fkk + fll) and
Fk = A(z)fk in the derivation. Equation (7) states simply that consumption and debt
payments (the right hand side) must equal total output minus equilibrium payments to
capital plus new debt.
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For the rest of the paper, as labor supply is constant, we will remove the dependence of
F on l for simplicity.

The government’s discount factor

As already noted, the government’s discount factor, β, plays an important role in the sub-
sequent analysis. In Thomas and Worrall (1994), a benevolent government discounts at the
world interest rate, that is β = 1/(1+r). However, it may be the case that the world interest
rate is lower than agents’ discount factors, as in the general equilibrium models of Huggett
(1993) and Aiyagari (1994). Moreover, there are political economy reasons that may justify
a government that discounts the future at a higher rate than its domestic constituency. Per-
haps the most direct driver of government impatience is the fact that governments may lose
office, as in the canonical model of Alesina and Tabellini (1990). In their model, politicians
are impatient because the nature of the political process does not assure the incumbent politi-
cians that they will remain in power in the future. This force for government impatience is
prominent in several other political economy models, for example Grossman and Van Huyck
(1988) and Amador (2004) . In general, there are compelling theoretical reasons why the
government’s discount factor may differ from the world interest rate. Moreover, there is
suggestive empirical evidence, as well. For example, political uncertainty is associated with
actions consistent with increased impatience, such as lower levels of foreign reserves and an
increased reliance on inefficient systems (see Aizenman and Marion (2004) and Cukierman
et al. (1992)).

Given the above discussion, it is important to consider the consequences of government
impatience on the model’s predictions. In particular, the case of β(1 + r) < 1 is of particular
interest in understanding sovereign debt dynamics and the associated pattern of foreign
direct investment. We therefore explicitly include this case in our analysis and proceed
under the following assumption:

Assumption 4. The government discount factor β is such that β(1 + r) ≤ 1.

3 Optimal Taxation under Commitment

Before we proceed to the analysis with limited commitment, as a useful comparison we
quickly characterize the optimal fiscal policy under commitment. We show that tax policy
is not distortionary and that investment will be constant at the first-best level k�.

Suppose that the government can commit at time 0 to a tax policy τ(zt) and debt pay-
ments (1 + r)b(zt) for every possible history of shocks zt. This “Ramsey” plan is announced
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before the initial capital stock is invested. Given some initial debt, b(−1), the government
chooses c(zt), b(zt), k(zt), and τ (zt) to maximize its objective, subject to the budget con-
straints of the domestic agents and the government as well as firm profit maximization, that
is equations (5) and (7) .

The problem can be simplified once we recognize that the combination of taxes and a
bond is equivalent to a complete set of state-contingent assets. In particular,

Lemma 1. Let v equal (1) evaluated at the optimum with initial debt b(−1). Then

v = max
{c(zt)},{k(zt)}

∞∑
t=0

∑
zt

π(zt)βtU
(
c
(
zt
))

(8)

subject to,

∞∑
t=0

∑
zt

π(zt)
(1 + r)t+1

⎛
⎝F (zt, k(zt−1))− (r + δ)k(zt−1)− c(zt)

⎞
⎠ ≥ b(−1) (9)

Conversely, any v that solves this problem is a solution to the Ramsey problem.

The complete markets equivalence results from the ability to transfer resources across
states within a period using capital taxes (keeping the average tax constant) plus the ability
to transfer resources across periods with the riskless bond. The combination is sufficient to
transfer resources across any two histories, as also shown in Judd (1992), Zhu (1992), and
Chari et al. (1994).

The scheme exploits the fact that capitalists are risk-neutral and that capital is immobile
for one period. In the model with redistribution and affine taxation studied by Werning
(2007), it is argued that ex-post capital taxes do not in general complete the markets, as
capital taxes should also replicate contingent transfers among the heterogeneous agents in
the economy. In our model, domestic agents are homogeneous, allowing capital taxes to
complete the markets. Indeed, from the perspective of the government, given that only
foreigners hold the capital stock, an ex-post capital levy in a given state and an external
asset that pays the country the same amount in the same state are equivalent: they are both
state-contingent instruments that transfer resources from foreigners to domestic agents.

We characterize some key features of the optimal policy under commitment in the fol-
lowing proposition,

Proposition 1. Under commitment, for all zt, z′t ∈ Z × Z, and for all zt−1 ∈ Zt−1, the
optimal fiscal policy has the following features: (i) it provides full intra-period insurance
to the workers, c ({zt, zt−1}) = c ({z′t, zt−1}) ; (ii) it smooths consumption across periods
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with discounting, U ′(c(zt−1)) = β(1 + r)U ′(c(zt, zt−1)); (iii) at the begining of every period,
the expected capital tax payments are zero and therefore capital is always at the first best
level; and (iv) the amount of debt issued is independent of the current shock, b({zt, zt−1}) =
b({z′t, zt−1}).

Results (i) and (ii) are standard outcomes of models with complete markets and full
commitment. Consumption is equalized across states of nature. Consumption trends up,
down, or is constant over time, depending on whether the rate of time discount is less than,
greater than, or equal to the world interest rate, respectively. Result (iii) follows from the
fact that capital only enters the budget constraint, so optimality requires maximizing total
output and not distorting investment. This zero tax on capital result is well known in the
steady state of neoclassical economies, see for example Chamley (1986), and the stochastic
version in Zhu (1992). Chari et al. (1994) obtain a similar result in a business cycle model.
Judd (1985) also showed the result holds in a model with redistribution (see also Werning,
2007, for a general analysis). In our model, the small open economy assumption implies
that capital is infinitely elastic ex-ante and therefore that the zero-taxation of capital is
optimal at all dates and not just asymptotically. See Chari and Kehoe (1999) for a related
discussion. Result (iv) indicates how consumption smoothing is implemented using taxes
and debt. Taxation is used to transfer resources across states, and debt to transfer resources
across time. For example, when z is strictly an endowment shock or when there are only
two states, the optimal plan calls for counter-cyclical taxes, with capital taxed more in
low endowment states compared to high endowment states. Note that this counter-cyclical
taxation does not distort investment. Whether z is an endowment or productivity shock, the
amount of debt issued however, is independent of the current shock in an i.i.d. environment.
The resulting fiscal deficit is acyclical. The results in this section show that a government
with commitment will not amplify shocks through its tax policy. This holds independent of
the relation between β and r – even if the government were impatient relative to the market,
there will be no distortion of investment as long as the government can commit.

4 Optimal Taxation with Limited Commitment

Once the investment decision by the capitalists has been made, the government has an
incentive to tax capital as much as possible and redistribute the proceeds to the workers.
Similarly, a government has an incentive to default on its outstanding debt obligations. Thus,
the optimal tax and debt policy under commitment may not be dynamically consistent. In
this section we analyze the implications of the government’s inability to commitment.
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To constrain the government’s ability to expropriate foreign income to plausible levels,
we place an upper bound on the capital income tax rate:

Assumption 5 (A Maximum Tax Rate). The tax rate on profits cannot be higher than
τ̄ = 1.

That is, the most the government can tax in any state is one-hundred percent of profits.
The goal is to characterize efficient equilibria of the game between the capitalists and

the government. We make the standard assumption that the external financial markets can
commit to deny access in case of a deviation by the government:

Assumption 6. If the government ever deviates from the prescribed allocation on either
taxes or debt payments, the country will remain in financial autarky forever; specifically the
government would not be able to issue debt or hold external assets.

That is, foreign creditors can commit to punish default with complete exclusion, even from
savings. This is the harshest penalty that respects sovereignty.

Efficient allocations are implemented with the threat of the worst punishment if the gov-
ernment deviates on either taxes or debt payments. As noted above, the worst outcome in
financial markets is permanent exclusion. Conditional on financial autarky, the worst equi-
librium of the game between foreign owners of capital and the government is zero investment,
that is kaut = 0. In particular, the government’s best response to any positive investment
conditional on no future investment and financial autarky is to tax all capital income (i.e.
set the tax rate to τ̄). The foreign investors’ best response to τ̄ is to invest zero. Therefore,
zero investment is always an equilibrium under financial autarky . It is the worst equilibrium
as it minimizes the government’s tax base at all histories. Let Vaut denote the continuation
value of the government in autarky. Specifically,

Vaut =
∑
z∈Z
π(z)U(F (z, 0))

1− β . (10)

This assumes that the installed capital cannot be operated (or sold) by the government upon
deviation.1 We assume that τ̄ does not bind along the equilibrium path, but places an upper
bound on seized income if the government deviates.2

Definition. Given an initial debt b(−1), an optimal allocation under limited com-
mitment is a sequence of functions c(zt), b(zt), τ(zt), and k(zt) such that (1) is maximized,

1Allowing the government to sell off or immediately consume a part of the capital stock after deviation
will not change the problem in a significant manner, as long as the outside option remains increasing in the
current shock.

2Implicitly, the previous section assumed that τ̄ is greater than the maximal tax rate under the Ramsey
plan (that is, the Ramsey plan is feasible without imposing negative post-tax profits on capital).
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constraints (2)-(5) hold, and the government at all histories prefers the continuation alloca-
tion to deviating and taxing capital at the highest possible rate τ̄ , and/or defaulting on its
debt obligations:

∞∑
i=0

∑
zt+i
π(zt+i|zt)βiU(c(zt+i)) ≥ U(F (zt, k(zt−1))) + βVaut, ∀zt. (11)

Note that the payoff after deviation is independent of the assets held by the government,
hence if the government defaults on its tax promises while holding positive assets, b(zt) < 0,
it will loose them. It is not relevant for an optimal allocation to specify what happens to the
seized assets as long as they are lost to the government. For the rest of the paper, whenever
we refer to optimal allocations, we will be referring to optimal allocations under limited
commitment.

4.1 A Recursive Formulation

Let us denote by v the maximal amount of utility attainable to the government in an optimal
allocation, given that it has issued an amount b ∈ b to the foreign financial markets, where
b denotes the set of possible debt levels for which the constraint set is non-empty. We also
impose that the set b is bounded below (that is, assets have a finite upper bound). We
discuss below that this bound is not restrictive.

Let us denote by B the function such that (1+r)b = B(v), for any b ∈ b. We characterize
the constrained optimal allocations recursively. Histories are summarized by promised ex-
pected discounted utility v for the government. We initially consider all v in a closed interval
[Vaut, Vmax], where Vmax is the value corresponding to the maximal asset level. We assume
Vmax ≥ U(F (z̄, k∗)) + βVaut. The right hand side of this inequality represents the utility
obtained by deviation if capital is at its first best level and z is its maximum realization.
The lower bound Vaut follows immediately from the government’s lack of commitment. Once
we have defined B(v) on [Vaut, Vmax], we will characterize and restrict attention to the subset
of [Vaut, Vmax] for which B(v) ∈ b.

We now show that optimal allocations solve the following Bellman equation in which
the state variable is v, and the choice variables are the capital stock, state-contingent flow
utility (u), and a state-contingent promised utility (ω) which will be next period’s state
variable. Let Ω define the space of possible choices, where ω(z) is restricted to [Vaut, Vmax],
and u(z) ≥ Umin and k ≥ 0. Let the function c(u) denote the consumption required to
deliver utility u (i.e., U(c(u)) = u). We can say that,
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Proposition 2. Let (c0(zt), k0(zt)) represent an optimal allocation given initial debt b(−1) ∈
b. Let v represent the government’s utility under this allocation. Then (1+r)b(−1) = B(v),
where B(v) is the unique solution to the following recursive problem:

B(v) = max
(u(z),ω(z),k)∈Ω

∑
z∈Z
π(z)

⎡
⎣F (z, k)− c(u(z))− (r + δ)k +

1
1 + r

B(ω(z))

⎤
⎦ (12)

subject to

v ≤ ∑
z∈Z
π(z)[u(z) + βω(z)] (13)

U(F (z, k)) + βVaut ≤ u(z) + βω(z), ∀z′ ∈ Z. (14)

Moreover, the sequence (c0(zt), k0(zt)) satisfies the recursive problem’s policy functions (it-
erating from the initial v).

Conversely, let (c1(zt), k1(zt)) be a sequence generated by iterating the recursive problem’s
policy functions starting from an initial v for each shock history zt and B(v) ∈ b. Then,
(c1(zt), k1(zt)) is an optimal allocation starting from an initial debt (1 + r)b(−1) = B(v)

The first constraint (13) is the promise keeping constraint that ensures the government
enjoys (at least) the promised utility v. The second constraint (14) is the participation
constraint. This ensures that the government never has the incentive to deviate along the
equilibrium path. As discussed above, consumption during deviation is productive output
plus the endowment. The continuation value post deviation is Vaut defined in (10). Note
that constraint (13) can be treated as an inequality because more utility can be offered to
the country without violating previous participation constraints.

The proposition tells us that an optimal allocation sits on the (constrained) Pareto fron-
tier defined by the government’s welfare and the bond holders’ welfare (subject to the re-
quirement that capital is always paid its opportunity cost). Note that the objective in the
recursive problem represents payments to the bond holders.

Our problem hence collapses to the problem of finding a constrained efficient contract
between a representative risk-neutral foreigner (who can commit) and the government (who
cannot commit). We can thus map our problem to those studied by Thomas and Worrall
(1994) and Alburquerque and Hopenhayn (2004). Differently from these papers, we carry
on our analyses for concave utility functions and for general relative discount factors.3 As
we will show below, these two elements have dramatic implications for the behavior of the

3Although Thomas and Worrall (1994) study a concave utility case in the appendix, they only analyzed
the case where β(1 + r) = 1.
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economy in the long run.
The operator defined by (12) maps bounded functions into bounded functions. It also

satisfies Blackwell’s sufficient conditions for a contraction. The operator maps the set of
continuous, non-increasing functions into itself. Standard arguments therefore imply that,

Lemma 2. The value function B(v) is non-increasing and continuous.

The participation constraints (14) are not necessarily convex due to the presence of
U(F (z, k)) on the left hand side of the inequality. So, to proceed with our characterization
of the optimum we make the following change in variable, and define h ≡ EA(z)f(k)−(r+δ)k
for k ∈ [0, k∗], and denote the optimal h as h∗ = EA(z)f(k∗) − (r + δ)k∗. Note that h is
strictly monotonic on [0, k∗]. Let K(h) denote the inverse mapping from [0, h∗] to [0, k∗],
such that k = K(h).

The following assumption will ensure the convexity of the problem:

Assumption 7. For all z ∈ Z, U(F (z,K(h))) is convex in h for h ∈ [0, h�].

By substituting h for k as the choice variable, this assumption ensures that the partici-
pation constraints are convex in h, while maintaining the concavity of the objective function
(as long as B is concave). Note that the condition must hold state by state.4

The condition required by Assumption 7 can be written as

A(z)f 2
k (k)U ′′(F (z, k))

fkk(k)U ′(F (z, k))
≤ r + δ

EA(z̃)fk(k)− (r + δ)
, (15)

for all k < k∗. Heuristically, this condition limits the concavity of the utility function relative
to the concavity of f(k). For example, if the utility function is linear, the left hand side goes to
zero. Note also that the condition is always satisfied in a neighborhood of k∗. As an example,
consider the standard utility function and a production function U(c) = c1−σ/(1 − σ) and
F (z, k) = zkα + g0z. Then, the condition is satisfied if α ∈ (1/2, 1) and g0 is sufficiently
large or σ is sufficiently close to zero.5

In the appendix we prove that Assumptions 7 imply concavity of the foreigner’s value
function and that optimal policies are interior:

4An alternative condition that only needed to hold in expectation was used in the working paper version
(Aguiar et al. (2006)). However, Assumption 7, for which we thank a referee, simplifies the proof of concavity
considerably.

5Specifically, that is:

g0 >

(
r + δ
αEz

) α
α−1 1 + α(σ − 1)

2α− 1
min

{(
σ(2α− 1)
α(σ − 1) + 1

) α
1−α
, 1

}
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Proposition 3. Under the stated assumptions, (i) the value function B(v) is concave and
differentiable on [Vaut, Vmax]; (ii) There exists Vmin > Vaut, such that B′(v) = 0 for all v ∈
[Vaut, Vmin], promise keeping holds with strict equality for v ≥ Vmin, and b = [B(Vmin), B(Vmax)];
(iii) B(v) is strictly decreasing for v ∈ (Vmin, Vmax] and strictly concave for v ∈ [Vmin, Vmax];
and (iv) for each v ∈ [Vaut, Vmax], there exists an optimal (k, u(z), ω(z)) with k > 0, and such
that there exists non-negative multipliers (γ, λ(z)) that satisfy

c′(u(z)) = γ + λ(z)
π(z)

(16)

B′(ω(z)) = −β(1 + r)
(
γ + λ(z)
π(z)

)
(17)

∑
z

π(z)Fk(z, k)− (r + δ) =
∑
z

λ(z)U ′(F (z, k))Fk(z, k), (18)

with −B′(v) = γ.

Statement (i) of the proposition is that the value function is concave, which requires
Assumption 7. Statement (ii) is that the promise keeping constraint does not bind in the
neighborhood of Vaut. That is, an optimal allocation does not deliver utility below some
threshold Vmin > Vaut. This places a lower bound on v, which corresponds to the upper
bound on b inherent in b. There is no optimal allocation that delivers a debt level greater
than B(Vmin). Statement (iii) strengthens statement (i) in that B(v) is strictly concave over
the relevant region. Statement (iv) indicates that there is an interior solution for each v.
The function B(v) is depicted in Figure 1.

v

B(v)

VminVaut

Figure 1: This figure depicts the function B(v). The solid portion associated with v ≥ Vmin
is the Pareto frontier.
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Let gi(v) denote the policies in an optimal plan for i = u(z), ω(z), and k, at state v. We
can immediately derive a number of properties of the optimal plan.

Proposition 4. In an optimal allocation,

(i) gi(v) is single-valued and continuous for i = u(z), ω(z), and k, for all v ∈ [Vmin, Vmax];

(ii) For all v ∈ [Vaut, Vmax], gk(v) ≤ k∗;

(iii) For any v ∈ [Vaut, Vmax], if the participation constraints are slack for a subset Zo ⊂ Z,
then c(gu(z)(v)) is constant for all z ∈ Zo. Moreover, B′(gω(z)(v)) = β(1 + r)B′(v) for
all z ∈ Zo;

(iv) If for some v ∈ [Vaut, Vmax] and (z′, z′′) ∈ Z × Z we have that gu(z′)(v) 
= gu(z′′)(v) or
B′(gω(z′)(v)) 
= β(1 + r)B′(v), then gk(v) < k∗;

(v) For any v ∈ [Vaut, Vmin], gω(z)(v) ≥ Vmin with a strict inequality for at least one z ∈ Z,
and for v ∈ (Vmin, Vmax], gω(z)(v) > Vmin for all z ∈ Z.

Part (i) of the proposition states that policies are unique and continuous, which follows
directly from the strict concavity of the objective function. Part (ii) states that capital
never exceeds the first-best level. This can be seen from (18) and the fact that multipliers
are non-negative.6 Part (iii) states that the planner will always implement insurance across
states and across time to the extent possible. If two states have unequal consumption and
slack constraints, it is a strict improvement (due to risk aversion) to narrow the gap in
consumption. Part (iv) of the proposition states that if the government fails to achieve
perfect insurance, it will also distort capital. To see the intuition for this result, suppose
that capital was at its first-best level but consumption was not equalized across states. Then,
some participation constraints must be binding in the states with high consumption. The
government could distort capital down slightly to relax the binding participation constraints.
This has a second-order effect on total resources in the neighborhood of the first-best capital
stock. However, the relaxation of the participation constraints allows the government to
improve insurance. Starting from an allocation without perfect insurance, this generates
a first-order improvement in welfare. Finally, part (v) states that eventually, an optimal
allocation uses only continuation values on the interior of the Pareto frontier.

6Benhabib and Rustichini (1997) show that in a deterministic closed economy model of capital taxation
without commitment, there are situations where capital is subsidized in the long run, pushing capital above
the first-best level. In our case, with an open economy, such a situation never arises.
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Define V ∗ = U(F (z̄, k∗))+βVaut. Note that for any v ≥ V ∗ we have that gk(v) = k∗.7 And
that for v < V ∗ at least one participation constraint will be binding. The next proposition
further characterizes the optimal allocation,

Proposition 5. In an optimal allocation,

(i) gk(v) is non-decreasing in v, and strictly increasing for all v ∈ [Vmin, V ∗];

(ii) gω(z)(v) and gu(z)(v) are strictly increasing in v for all v ∈ [Vmin, Vmax];

(iii) gω(z1)(v) ≥ gω(z0)(v) if z1 > z0, and gω(z̄)(v) > gω(z)(v) for all v ∈ [Vmin, V ∗].

Result (i) states that capital is increasing in promised utility or is at the first best. Result
(ii) tells us that utility flows and continuation values are increasing in promised utility as
well. Result (iii) states that future promised utility is non-decreasing in the realization of
the endowment. In other words, realizations of the shock generate a monotone “spreading
out” of continuation values. If v < V ∗, then insurance across states is not perfect and there
will be at least one pair of states where continuation values are strictly different.

The reason continuation values are relatively high following a high shock is due to limited
commitment and the temptation to deviate. The strongest temptation to deviate from the
optimal plan arises after receiving the highest income shock. An optimal contract will
naturally accommodates such temptation by prescribing higher domestic utility in case of
a high income shock today. Consumption smoothing implies that it is optimal to increase
future utility flows as well as the current flow utility, a result that is achieved through a
higher continuation value.

The spreading out of continuation values and the fact that capital is increasing in
promised utility implies the following:

Proposition 6 (Procyclicality). In an optimal allocation, k(zt, zt−1) ≤ k(z′t, zt−1) for zt < z′t.
Also, if k(z, zt−1) < k� then k(z, zt−1) < k(z̄, zt−1).

This proposition states that capital responds to shocks in a way that prolongs their
impact, in an environment in which the shocks are i.i.d.. A similar result was obtained by
Thomas and Worrall (1994), but only along a monotonic transition to a steady state level of
capital. As we will show in the next section, for general discount rates, such pro-cyclicality
result is maintained at a non-degenerate stationary distribution.

7If v ≥ U(F (z̄, k∗))+βVaut then, ignoring the participation constraints, it is optimal to set u(z)+βw(z) =
v for all z and k = k∗, which satisfies the participation constraints.
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4.2 Long Run Properties

If the government discounts the utility flows at the world interest rate, from (17) it follows
that −B′(ω(z)) = −B′(v)+λ(z)/π(z). Given that the multipliers are non-negative and that
B is strictly concave on (Vmin, Vmax], this implies that v is weakly increasing over time and
strictly increasing when the participation constraint binds. If the initial v lies below V ∗,
then limt→∞ vt = V ∗. The fact that the continuation value policies, gw(z)(v), are strictly
increasing in v, implies that vt < V ∗ for all t. If the initial v lies above V ∗, then no
participation constraint ever binds, and v remains constant at its initial value. Monotonicity
of v implies that in the long run capital monotonically approaches the first best. This
result is a major feature of the models of Thomas and Worrall (1994) and Alburquerque and
Hopenhayn (2004). In this environment, eventually enough collateral, in the shape of foreign
assets, is built up so that the participation constraint relaxes and the first best capital level
obtains. Therefore, the amplification and persistence results of Proposition 6 only hold along
the transition, but not in the steady state.

An alternate situation is one in which the government is impatient relative to the world
interest rate. In this case, the government has a preference for early consumption. However,
bringing consumption forward tightens the participation constraints in the future, distorting
investment. In fact, if the government is relatively impatient, promised utilities and capital
converge to a non-degenerate stationary distribution:

Proposition 7 (Impatience). If β(1 + r) < 1, in an optimal allocation, v and k converge
to unique, non-degenerate stationary distributions with respective supports that lie strictly
below V ∗ and k∗.

Impatience makes the persistence and cyclicality generated by limited commitment is
a permanent feature of the economy. And the economy never escapes the range in which
capital is distorted (not even asymptotically).

To visualize how the economy converges to the stationary distribution, we plot the pol-
icy functions for continuation utility (gω(z)(v)) in figure 2. We assume two states for the
endowment shock, z̄ and z. Proposition 5 states that the policy function for the high shock
lies above the policy for the low shock (strictly above for any v < V ∗), and they are both
increasing in v. The policy functions lie strictly above the 45 degree line at Vaut because
gz(v) ≥ Vmin > Vaut by Proposition 4 part (v).

Panel A assumes β(1 + r) = 1 and panel B assumes β(1 + r) < 1. Panel A indicates
that for v ≥ V ∗, the policy functions are equal (insurance across states) and on the 45
degree line (smoothing across periods). For v < V ∗, the policy functions lie above the 45
degree line. Therefore, starting from some v < V ∗, the promised utilities increase over time,

19



VautVaut

gω(z̄)(v)
gω(z̄)(v)

gω(z)(v)
gω(z)(v)

VminVmin V �V �
vv

ωω

45◦

45◦

Panel A: β(1 + r) = 1 Panel B: β(1 + r) < 1

long run

Figure 2: This figure depicts policy functions for next period’s promised utility as a function
of the current promised utility. The shock takes two possible values. The “top” solid line
represents the policy if the shock is high and the “bottom” solid line represents the policy if
the endowment shock is low. The dashed ray is the 45 degree line. Panel A represents the
case when β(1 + r) = 1 and Panel B represents the case when β(1 + r) < 1.

approaching V ∗ in the limit. Panel B indicates that when β(1 + r) < 1, for any v ≥ V ∗, the
policy functions lie strictly below the 45 degree line. To see this, note that from (17) and
the envelope condition,

−B′(ω(z)) = β(1 + r)
(
−B′(v) + λ(z)

π(z)

)
.

When all participation constraints are slack, β(1 + r) < 1 and strict concavity of the value
function imply that ω(z) < v. The policy functions intersect the 45 degree line at different
points, which indicate the limits of the stationary distribution (they might intersect the 45
degree line more than once). The limiting distribution is non-degenerate from Proposition
5. The uniqueness of the distribution is shown by proving that the minimum value where
the policy function gω(z̄)(v) crosses the 45 degree line is always strictly above the maximum
value where the policy function gω(z)(v) crosses the 45 degree line. This means that there
exists a middle point, say v̂, such that gω(z)(v) < v for v ≥ v̂, and gω(z̄)(v) > v for v ≤ v̂. So
that v̂ constitutes a mixing point, and a unique stationary distribution follows.

4.3 Discussion of the Benchmark Model

Within the limiting distribution, a low shock will lower promised utility and a high shock
will raise it, reflecting that the government’s utility oscillates within this range. Capital

20



will converge to a corresponding non-degenerate distribution in which k < k∗, with capital
oscillating one-for-one with promised utility. The level of capital and the level of debt (the
inverse of promised utility) of the economy are negatively correlated. The limited commit-
ment of the government therefore generates a debt over-hang effect. Following high shocks
the government accumulates assets. This slackens the participation constraint of the gov-
ernment in the future, reducing the incentive to deviate on taxes and therefore supporting
higher investment. On the other hand, following low shocks, the government accumulates
debt which raises the incentive to deviate and lowers investment. This mechanism differs
from that described in Sachs (1989) and Krugman (1988) where a large level of debt reduces
domestic investment because debt payments behave like a tax on investment. In the earlier
debt over-hang literature, debt relief can not only raise investment but also be Pareto im-
proving. In our environment, debt relief can benefit the government, but it is never a Pareto
improvement, since the economy is at all points on the constrained Pareto frontier.

In addition, since the long-run distribution of investment is unique, debt relief programs
cannot have a long-run effect on investment. The distortions in investment arise from the
lack of commitment of the government and impatience, which are issues that cannot be
resolved through debt relief.

The pattern delivered by the model is reminiscent of emerging market crises, as discussed
in the introduction. In many instances the increased fear of expropriation during a downturn
generates a sharp drop in foreign investment, amplifying the decline in output. Optimal tax
policy in the presence of limited commitment is consistent with such empirical regularities.

While the government is providing insurance to the domestic agents, this does not neces-
sarily imply that government expenditures are higher during bad states. The model makes
no distinction between private consumption and government provision of goods to the do-
mestic agents. Nevertheless, it is the case that the sum of consumption and government
expenditures is positively correlated with the shocks in the model, a fact consistent with the
data (see Kaminksy et al., 2004).

Net foreign liabilities in our model can be defined as debt plus foreign capital. The
change in net foreign assets, the current account, is typically counter-cyclical in the data,
particularly for emerging markets (see Aguiar and Gopinath, 2007). In our model, a positive
shock generates an inflow of foreign direct investment inducing a deterioration of the current
account. On the other hand, debt declines following a high shock, generating an improvement
of the current account. The net effect on the current account is theoretically ambiguous, a
standard outcome in a model with transitory shocks.

Finally, note that a common feature of models of insurance with limited commitment is
that the participation constraints tend to bind when the endowment is high. This results
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from the fact that insurance calls for payments during booms and inflows during downturns.
However, in precisely an environment that emphasizes insurance, we show that distortions
of investment are greater during recessions because of the need to accumulate debt. This in
turn makes low taxes in the future more difficult to sustain, depressing investment today.

5 The Importance of Risk Aversion and Debt

In the benchmark environment, the government uses taxes and debt to insure a risk averse
domestic constituency. In this section, we explore the relative roles that insurance and debt
play in the investment dynamics described above. Specifically, we consider two alternative
environments: (i) domestic agents are risk neutral; and (ii) the government runs a balanced
budget.

5.1 Risk Neutral Domestic Agents

To highlight the role of concavity of the utility function, in this subsection we impose instead
the assumption that domestic agents utility flow is given by U(c) = c, with the additional
restriction that c ≥ 0.

In this environment, the government has no incentive to use taxes and debt to smooth
consumption across states or time. The question we address is whether fiscal policy continues
to induce cycles in investment absent the need for insurance. As shown in Thomas and
Worrall (1994), if β(1 + r) = 1, the linear case shares the same long run properties as the
risk averse case, namely, investment converges to the first best level. The case of interest is
then when β(1 + r) < 1.

Let us define k̃ as the value that solves:

EFk(z, k̃) =
r + δ
β(1 + r)

. (19)

The next proposition states that if agents are risk neutral, there are parameter values such
that the economy converges to a degenerate distribution, albeit one with sub-optimal invest-
ment k̃. This is in contrast with what we obtained for the risk averse case when β(1+r) < 1.

Proposition 8. Suppose U(c) = c, with c ≥ 0. If F (z, k̃) ≥ βE
[
F (z, k̃)− F (z, 0)

]
, where k̃

is given by equation (19), then in an optimal allocation the economy converges to a degenerate
stationary distribution with constant capital level k̃.

Note that if β(1 + r) < 1, then the long run capital stock is sub-optimal, but a singleton,
as k̃ < k∗. The fact that capital is sub-optimal follows from impatience, as in the risk

22



averse case. The government would like to bring consumption forward, and it does so by
accumulating debt. The optimal debt level trades off the desire to consume early against the
fact that debt depresses investment. However, in the risk neutral case, impatience does not
necessarily imply that capital fluctuates indefinitely. To understand why, note that concavity
of the production function implies that it is inefficient for investment to vary over time.
Movements in investment are driven by movements in debt, given that debt levels influence
the government’s incentives to expropriate. In the risk averse case, debt was necessary to
smooth consumption over time. However, with risk neutral utility, there is no need to smooth
consumption over time or across states. Therefore, the optimal plan has a constant debt
level and adjusts contemporaneous consumption to absorb all the fluctuations in z. More
precisely, contemporaneous consumption absorbs all shocks subject to the constraint that
consumption cannot be negative. The condition F (z, k̃) ≥ βE

[
F (z, k̃)− F (z, 0)

]
ensures

that the shocks are not so dispersed that the optimal allocation is constrained by the non-
negativity of consumption.

When shocks are additive, this condition is always satisfied:

Corollary 1 (Endowment Shocks). Suppose that F (z, k) = f(k) + g(z), that is A(z) = 1
for all z, then capital converges to a degenerate stationary distribution at k̃.

Under risk neutrality, debt is not used to smooth consumption inter-temporally. How-
ever, debt does allow consumption to be brought forward, reducing the level of investment
sustainable in the steady state. That is, as in the risk averse environment, there is a trade
off between early consumption and building up enough foreign assets to sustain high invest-
ment. In the risk neutral case, we can solve explicitly for the level of debt in the degenerate
steady state:

Lemma 3. Suppose that β(1 + r) < 1 and F (z, k̃) ≥ βE
[
F (z, k̃)− F (z, 0)

]
, with k̃ defined

in equation (19). Then b̃, the amount of debt outstanding in the steady state, is given by

rb̃ = β
(
E[F (z, k̃)− F (z, 0)]− (1 + r)EFk(z, k̃)k̃

)

Note that the sign of outstanding debt is ambiguous, that is, the government may be a net
debtor or creditor. In particular, b̃ is positive if E[F (z, k̃)−F (z, 0)−Fk(z, k̃)k̃] > rEFk(z, k̃)k̃.
Given that k̃ is bounded away from zero, the term on the left is strictly positive due to the
concavity of the production function. Therefore, the country will be a long-run debtor if r
is sufficiently small. For example if f(k) = kα, then the condition in Lemma 3 implies that
the country is a debtor in the degenerate distribution if and only if α > 1/(1 + r). It may
seem surprising in this example that whether the country is a debtor or creditor does not
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depend on β. However, the absolute magnitude of b̃ as well as the level of capital k̃ depend
on β (see equation 19). More generally, whether the country is a long run debtor or creditor
depends on the parameters of the problem. However, as long as β(1 + r) < 1, even if the
government holds positive foreign assets, these assets will not be sufficient to sustain first
best investment.

In general however, the distribution of shocks may be such that the condition for Propo-
sition 8 fails and it is infeasible to implement the constant investment allocation. We now
state a partial converse to Proposition 8 for the linear case with β(1 + r) < 1, where we
continue to use Vmin to denote max {v|B(v) = B(Vaut)}:
Proposition 9. Suppose that the economy is in a degenerate steady state such that v = v̂
and k = k̂ every period. If v̂ > Vmin, then F (z, k̃) ≥ βE

[
F (z, k̃)− F (z, 0)

]
, where k̃ is as

defined in Proposition 8.

The condition that v̂ > Vmin implies that the steady state is on the interior of the Pareto
frontier. This is always the case with risk aversion, but we could not rule it out in general if
utility is linear and the government is impatient. In short, the two propositions imply that
F (z, k̃) ≥ βE

[
F (z, k̃)− F (z, 0)

]
is a sufficient condition for a degenerate steady state, and

is a necessary condition for a degenerate steady state on the interior of the Pareto frontier.
The case of risk neutrality highlights the role that debt and consumption smoothing play

in the long run dynamics of the benchmark economy. In particular, to the extent feasible,
the optimal allocation with linear utility avoids movements in investment by keeping debt
constant. This is feasible as long as shocks are not too dispersed. However, with dispersed
shocks, the non-negativity constraint on consumption, coupled with impatience, generates
long run dynamics reminiscent of the risk averse case. On the other hand, when β(1+r) = 1
assets are accumulated, so that consumption is eventually equalized across states in the
steady state, and hence positive in every state.

5.2 Balanced Budget

We now explore optimal taxation of foreign capital when the government does not have
access to debt. The purpose of this exercise is firstly to highlight the role of debt in gen-
erating investment cycles. In the balanced budget case, i.i.d. shocks imply that there is
no state variable that varies over time and therefore optimal decisions are invariant to the
realized history of shocks. Consequently, while investment may be distorted, there will be
no cyclicality of investment. This is reminiscent of the risk neutral case when shocks are
not too dispersed. Secondly, we discuss circumstances under which budgetary restrictions
can alter the volatility of consumption. Finally, budgetary restrictions have recently been
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considered by countries such as Brazil and Chile, and the following discussion sheds light on
the implications of such policies for the cyclical behavior of foreign investment and domestic
consumption.

To be precise, this section alters the benchmark model through the following assumption:

Assumption 8 (Balanced Budget). The government runs a balanced budget at every state:

τ
(
zt
)

Π
(
zt
)

+ g(zt) = T
(
zt
)
.

Under the balanced budget assumption, we no longer have complete markets equivalence,
and therefore cannot rewrite the government’s problem as (8). However, constraints (2)
through (5) can be simplified to

∑
z∈Z
π(z)F

(
k
(
zt−1
)
, z
)
−∑
z∈Z
π(z)c

(
{z, zt−1}

)
− (r + δ)k(zt−1) = 0, ∀zt−1. (20)

As before, the fact that capitalists care only about the expected return to capital allows the
government to use taxes to transfer resources to workers across states. However, the absence
of bonds prevents inter-temporal transfers.

The full-commitment, balanced budget problem for the government can be written as
maximizing:

∞∑
t=0

∑
zt

βtπ(zt)U
(
c
(
zt
))
,

subject to (20). We characterize the optimal plan under commitment and a balanced budget
in the following proposition:

Proposition 10. Under commitment and a balanced budget, the optimal policy: (i) Provides
full intra-period insurance to the workers, c ({z, zt−1}) = c ({z′, zt−1}) for all (z, z′) ∈ Z ×Z
and zt−1 ∈ Zt−1; (ii) At the beginning of every period, the expected capital tax payments are
zero and investment is first best: ∑z∈Z π(z)τ({z, zt−1})Fk(z, k(zt−1)) = 0 and k(zt−1) = k∗.

This proposition differs from the complete markets case of Proposition 1 in one important
respect. The optimal policy under a balanced budget insures workers across states within
a period but does not necessarily deliver the optimal level of consumption across periods.
Here consumption is equalized across periods. If β(1 + r) < 1, this is suboptimal. More
generally, the optimal allocation is independent of β.

As in the benchmark model with full commitment, insurance is accomplished without
distorting investment. That is, a balanced budget does not overturn the fact that the optimal
policy sets expected capital taxes equal to zero. The government taxes capitalists and
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transfers to workers in low-endowment states while transferring from workers to capitalists
in high-endowment states. However, the inability to borrow and save limits this insurance
to period-by-period insurance and not insurance over the entire path.

We now consider the case without commitment under the balanced budget constraint. A
balanced budget implies that payments to foreigners net of the opportunity cost of capital
is zero every period. That is, in the notation of the benchmark model, foreign utility B
is constrained to be zero. The punishment remains autarky, which is unaffected by the
requirement of a balanced budget and is independent of z since shocks are i.i.d. In the
absence of debt, the value function in the optimal program, V , is also independent of z.

The balanced budget problem can be written as directly maximizing the government’s
objective function subject to the break even constraint of the foreign capitalists. Specifically,

V = max
k,c(z)

E [U(c(z)) + βV (z)] , (21)

subject to
E[F (k, z)]− E[c(z)]− (r + δ)k = 0, (22)

and
U(c(z)) + βV ≥ U(F (k, z)) + βVaut, ∀z ∈ Z. (23)

Given that there is no state variable in this problem, it follows that all policies are
constant,

Proposition 11 (No amplification). If the government is restricted to a balanced budget and
shocks are i.i.d., investment will be constant.

Investment may be distorted, but will be constant. With debt and an i.i.d. shock process,
investment co-moved with the cycle indefinitely, as long as β < 1/(1 + r). Without debt,
capital is constant when shocks are i.i.d. regardless of the relation between β and (1 + r).
In this sense, the balanced budget case highlights the role of debt in generating cyclical
investment.8

Another distinction the balanced budget assumption introduces is that depending on β
either the first best is attainable immediately or it is never sustainable. With debt, we have
that as long as β ≥ 1/(1 + r), the first best was achieved in the limit as time approached
infinity. Under a balanced budget, there exists a β∗ ∈ (0, 1) such that for all β ≥ β∗ the
full commitment solution is sustainable under the balanced budget assumption, and it is not

8Debt generates persistence endogenously in the case with i.i.d. shocks. To see the analogy between
having debt and having persistent shocks see Aguiar et al. (2006) where there is no debt, but shocks are
assumed to be persistent. The persistent shocks generate a comparable investment pattern as debt in the
neighborhood of the first best capital stock.
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sustainable for β ∈ [0, β∗). This is a version of the folk theorem. When the government is
sufficiently patient, the future benefits of continuation are sufficiently important to sustain
the first best capital stock.

Proposition 12. There exists a β∗ ∈ (0, 1) such that for all β ≥ β∗ the full commitment,
balanced budget solution is sustainable, and it is not sustainable for β ∈ [0, β∗). In particular,
if β ≥ β∗, then restricting the government to a balanced budget achieves the first best level
of capital, k�, and constant consumption.

The first statement in the proposition follows from an application of the folk theorem.
The best allocation that can be attained with a balanced budget is one that delivers first best
level of investment and constant consumption. When the discount factor is high enough,
such allocation is sustainable.

Access to sovereign debt markets generates cyclical and distorted investment and volatile
consumption (Proposition 4). If the government and the worker share the same discount
factor, i.e. the government is benevolent, this increase in volatility or distortion in invest-
ment is associated with a welfare improvement. Placing a balanced budget constraint on a
benevolent government can never be welfare improving.

However, if the government is impatient relative to domestic agents, it will not implement
the optimal allocation if it has access to debt. In particular, if the domestic agents discount at
the world interest rate, the allocation with first best investment and constant consumption
is the first best optimal allocation between domestic agents and foreigners (ignoring the
government). It follows that in this case, a balanced budget restriction is welfare improving
for domestic agents.

Corollary 2. Suppose the government discounts utility at rate β. If domestic agents discount
the future at the market interest rate, and β∗ ≤ β < 1/(1 + r), so that the government is
more impatient than the domestic agents, then restricting the government to a balanced budget
improves the welfare of domestic agents.

6 Conclusion

The limited ability of the government to commit and the higher impatience of the government
relative to the market are important features of developing markets. In this paper we showed
that the combination of these features significantly alter the conclusions of the existing
literature on sovereign debt and foreign direct investment. The long-run in this economy is
characterized by distorted investment and investment cycles that prolong the effect of i.i.d
shocks. The analysis emphasized the distorting effect that sovereign debt has on investment.
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If a government is patient, debt is reduced (or assets accumulated) until the first best is
sustainable. However, if the government is impatient relative to the world interest rate, debt
and capital oscillates indefinitely, with low endowments associated with low investment. This
debt overhang effect is derived endogenously and debt relief is shown not to alter the long-run
behavior of investment.

The paper also highlighted the role of risk-aversion and access to debt markets in gener-
ating the results. If agents are risk neutral, there is no incentive to smooth consumption over
time. In such an environment, the government to the extent feasible minimizes movements
in debt in order to eliminate cyclical distortions to investment. Similarly, if the government
runs balanced budgets and shocks are i.i.d., capital is stable. This highlights the role debt,
impatience, and limited commitment each play in amplifying investment cycles.

While it is clear that imposing a balanced budget stabilizes capital, it does not neces-
sarily improve welfare. Indeed, when the government is benevolent, imposing an additional
constraint on the government is never welfare improving, despite the increased income sta-
bility. The government borrows because domestic agents are impatient and are willing to
trade more consumption today in exchange for more volatility in the future. However, if
the government is impatient relative to the workers as well as the world interest rate, the
government will sub-optimally (from the workers’ perspective) trade away future stability
for increased current consumption. Depending on the magnitude of this distortion, this may
provide a rationale for imposing a balanced budget constraint, although it leaves open the
question of whether there is a more efficient mechanism that allows some inter-temporal
smoothing, but not full access to debt markets.
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A Appendix

A.1 Proofs of Lemma 1 and Proposition 1

Proof of Lemma 1:

Proof. As the objective functions are the same, we need to show that the constraint sets are
equivalent. Suppose that c(zt) and k(zt) satisfy constraints (2) through (5). Taking expec-
tations of both sides of equation (7) from the initial information set, we have (suppressing
labor in the production function):

E

[
F (zt, k(zt−1))− c(zt)− (r + δ)k(zt−1)

]
= E

[
(1 + r)b(zt−1)− b(zt)

]
, (24)

where we have used E [(1− τ(zt))Fk(zt, k(zt−1)k(zt−1)] = E [(r + δ)k(zt−1)]. We can solve
this first order difference equation forward, applying the No Ponzi condition, to obtain:

E

[ ∞∑
t=0

1
(1 + r)t

(
F (zt, k(zt−1))− c(zt)− (r + δ)k(zt−1)

)]
≥ (1 + r)b(−1). (25)

To go the other way, suppose that c(zt) and k(zt) satisfy (9). Starting from b(−1),
construct a sequence of b(zt) from the law of motion:

b(zt) =
∑
zt∈Z
π(zt)

[
c
(
zt
)
− F

(
zt, k

(
zt−1
)) ]

+ (r + δ)k(zt−1) + (1 + r)b(zt−1). (26)

Given b(zt), c(zt) and k(zt), the τ(zt) solve equation (7) at each history. From (26), these
taxes satisfy (5). The derivation of (7) also verifies that this choice is consistent with condi-
tions (2) through (4).

Proof of Proposition 1:

Proof. The proof of (i) through (iii) follows straightforwardly from the solution to (8). Let
λ be the multiplier on the single budget constraint. The first order conditions from the
optimization are

βt(1 + r)tU ′(c(zt)) = λ, (27)
∑
z∈Z
π(z)Fk(z, k(zt)) = r + δ. (28)

To prove (iv) we use the budget constraint, which holds with equality as λ > 0. Let ct
be consumption at time t, which is independent of the history of shocks by (ii). The budget
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constraint (9) implies that at any history zt, we have

(1 + r)b(zt−1) =
∞∑
s=t

E [F (zs, k∗)]− (r + δ)k∗

(1 + r)s−t
−
∞∑
s=t

ct
(1 + r)s−t

. (29)

Note that the expectation of F (zs, k∗) is independent of history given that capital is constant
at k∗ and z is iid. Therefore, debt does not depend on the particular path of shocks.

A.2 Proof of Proposition 2

Proof. The proposition holds by inverting the Pareto frontier. Specifically, the government’s
problem in recursive form with state variable b is

V (b) = max
c(z),b(z),k

E [u(c(z)) + βV (b(z))] (30)

subject to,

E [c(z) + (1 + r)b] = E [F (z, k)− (r + δ)k + b(z)]

u(c(z)) + βV (b(z)) ≥ U(F (z, k)) + βVaut, ∀z ∈ Z
V (b(z)) ≥ Vaut, ∀z ∈ Z.

The first constraint is the expected budget constraint, derived from (7), where we have
substituted in the first order condition for foreign direct investment. The second and third
constraint ensure participation. Note that optimality ensures the budget constraint binds
with equality. Therefore, V (b) is strictly decreasing and has an inverse. By definition,
B(v)/(1 + r) is this inverse, i.e. V (B(v)/(1 + r)) = v. Therefore, an allocation that solves
(30) must also solve (12). The converse is true as long as the promise keeping constraint (13)
binds. When (13) does not bind, B(v) is flat as we increase v (see Figure 1). The domain
of v on which B(v) is flat cannot be part of the Pareto frontier and B(v) does not solve
(30). This implies that if promise keeping does not bind at v, then there are no b such that
V (b) = v. That is, the constraint set of (30) is empty and b 
∈ b.

A.3 Proof of Lemma 2

Proved in the main text.
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A.4 Proof of Propositions 3 – 5

This subsection characterizes the solution to the Bellman equation. The main technical
challenge stems from the fact that the constraint set is not in general convex. However,
assumption 7 is sufficient to ensure convexity of the constraint. Standard techniques can
then be used to prove concavity and differentiability of the value function and the associated
uniqueness and continuity of policy functions. With these results in hand, Propositions 3 –
5 follow immediately.

We first show that

Lemma 4. Any optimal allocation has k ≤ k∗ after any history

Proof. The proof is direct. Suppose that after some history k > k∗, then a reduction in k
while keeping the corresponding consumption allocation constant, satisfies the participation
constraints. Note that such a decrease in k increases the foreign return in the current period.
So it cannot be optimal to have k > k∗.

Let T denote the operator associated with the Bellman equation (12). We replace the
capital stock as a choice variable with h ≡ Ezf(k) − (r + δ)k. Notice there is a one-to-
one monotonic mapping between h and k ∈ [0, k∗], which is the relevant range given the
previous lemma. Denote K(h) to be the mapping from h to k. Let H = [K−1(0), K−1(k∗)]
be the appropriate domain for the choice variable h. Correspondingly, we replace the original
choice set Ω with Ω′ to account for the change in variable. The Bellman operator can then
be expressed as:

TBn(v) = max
(u(z),ω(z),h)∈Ω′

∑
z∈Z
π(z)

⎡
⎣h+ g(z)− c(u(z)) + 1

1 + r
Bn(ω(z))

⎤
⎦ (31)

subject to

v ≤ ∑
z∈Z
π(z)[u(z) + βω(z)]

U(F (z,K(h))) + βVaut ≤ u(z) + βω(z), ∀z′ ∈ Z.

Note that the operator defined by (31) is a contraction. The value function is therefore
the unique fixed point of this operator. Note as well that assumption 7 implies that
U(F (z,K(h))) is convex in h. Therefore, the constraint set is convex. Moreover, the ob-
jective function is concave if Bn is concave. The operator maps the space of bounded,
continuous, concave functions into itself. The fact that T is a contraction implies that the
fixed point is bounded, continuous, and concave.
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To prove differentiability, we will appeal to the Benveniste and Scheinkman theorem (see
Stokey and Lucas (1989) Theorem 4.10). However, to do so, we must prove that optimal
policies are interior. We do so in the following sequence of lemmas.

We begin by proving that capital is always greater than zero. We do so in two steps.
We first show that the autarkic allocation is never optimal. Then, we show that this implies
that zero capital is never optimal.

Lemma 5. The autarkic allocation is never optimal.

Proof. In an autarkic allocation h = 0 and u(z) = U(F (z, 0)) at all histories. From this
allocation consider the following perturbation. Increase h by Δh and increase u(z) by
θU ′(F (z, 0))Δh at all histories, where

θ ≡ U ′(F (z, 0))
U ′(F (z, 0)) + β

1−βEU
′(F (z, 0))

< 1

Note that we have chosen θ so that participation is satisfied. To see this, note that partici-
pation can be written as

u(z) + βEu(z)
1− β ≥ U(F (z, 0)) + βVaut.

The increase Δh raises the outside option by U ′(F (z, 0))Fk(z, 0)K ′(0)Δh. The inverse func-
tion theorem states thatK ′(h) = (EFk(z,K(h))−(r+δ))−1. As h→ 0, EFk(z,K(h))K ′(h)→
1. Therefore, the outside option evaluated at h = 0 increases by U ′(F (z, 0))Δh. The left
hand side increases by θ [U ′(F (z, 0)) + βEU ′(F (z, 0))/(1− β)] Δh. By the definition of θ,
this increase is greater than or equal to U ′(F (z, 0))Δh, implying that participation is satisfied
at the new allocation. The perturbation increases the objective function by

Δh1 + r
r

(1− Ec′(U(F (z, 0)))θU ′(F (z, 0))) .

Note that c′(U(F (z, 0)))U ′(F (z, 0)) = 1. The fact that θ < 1 implies that this feasible
perturbation raises the objective. Therefore, the original allocation is not optimal.

We now show that

Lemma 6. In an optimal allocation, capital is always strictly positive: h(v) > 0 for all v,
where h(v) denotes the optimal choice of h given a promised utility v.

Proof. Suppose, to generate a contradiction, that h(v) = 0 is optimal. Consider the following
perturbation. Increase h(v) by Δh. Let Z ′ denote the set of z for which participation holds
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with equality. To satisfy participation for z ∈ Z ′, increase u(z) by U ′(F (z, 0))Fk(z, 0)K ′(0)Δh =
U ′(F (z, 0))Δh. Leave the allocations for z /∈ Z ′ unchanged. This will not violate participa-
tion for a small increase in h. The change in the objective function from this perturbation
is

Δh

⎛
⎝1− ∑

z∈Z′
π(z)c′(u(z))U ′(F (z, 0))

⎞
⎠

The binding participation constraint for z ∈ Z ′, implies that u(z) ≤ U(F (z, 0)), given that
ω(z) ≥ Vaut. So that c′(u(z))U ′(F (z, 0)) ≤ 1 for z ∈ Z ′. Note that the objective function
strictly increases if there exists a z /∈ Z ′ or if for some z ∈ Z ′, u(z) < U(F (z, 0)).

We consider two possibilities in turn: (i) Either v > Vaut, or v = Vaut and the promise
keeping constraint is slack; and (ii) v = Vaut and the promise keeping constraint holds with
equality:

(i) Suppose the promise keeping constraint is slack or v > Vaut. Then E(u(z) + βω(z)) >
Vaut = E(U(F (z, 0)) + βVaut), where the last equality follows from the definition of
Vaut. Therefore, there must be at least one state for which participation is slack at
h = 0. That is, there exists a z /∈ Z ′, implying the change in the objective is strictly
positive.

(ii) Suppose that the promise keeping constraint holds with equality at v = Vaut. That is,
Eu(z)+βω(z) = Vaut = EU(F (z, 0))+βVaut. Together with the fact that u(z)+βω(z) ≥
U(F (z, 0)) +βVaut, it follows that the participation constraints bind for all z ∈ Z, that
is Z ′ = Z. In this case, optimality of the original allocation requires that u(z) =
U(F (z, 0)) for all z (or else the perturbation would be an improvement). However,
this implies that ω(z) = Vaut for all z, given the binding participation constraints.
Therefore the original allocation is the autarkic allocation, contradicting lemma 5.

This completes the proof.

The fact that k is always strictly positive implies the following corollary:

Lemma 7. Let Vmin be the highest v such that B(Vmin) = B(Vaut). Then Vmin ∈ (Vaut, V ∗),
where V ∗ ≡ U(F (z̄, k∗)) + βVaut ≤ Vmax. For all v ≥ Vmin the promise keeping constraint
holds with equality.

Proof. Vmin exists by continuity of the value function B. Given that h(Vaut) > 0, the
promise keeping constraint at Vaut is slack. This follows from the participation constraints.
Consider the relaxed problem at v = Vaut where the promise keeping constraint is ignored,
and let u(z) and ω(z) be the associated solution. Given the slackness of the promise keeping
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constraint, this problem will deliver the same allocation as the original problem. Define v̂ to
be E(u(z) + βω(z)) which is greater than Vaut given that the promise keeping constraint is
slack. Hence B(v̂) = B(Vaut). Moreover, for v ≥ v̂ promise keeping holds with equality. It
follows then that Vmin ≥ v̂ > Vaut.

To show that Vmin < V ∗, suppose not. Note that at v = V ∗, an optimal allocation
delivers k = k∗, u(z) = u(z′) and w(z) = w(z′) with u(z)+βw(z) = v ≥ U(F (z̄, k∗))+βVaut,
with all participation constraints slack. This follows from the fact that the allocation k = k∗

and u(z) + βω(z) = V ∗, ∀z ∈ Z, with u(z) = u(z′), satisfies all constraints at v = V ∗ by
definition. This allocation is also the optimal allocation ignoring participation constraints,
and therefore is optimal for the original problem. If it were the case that B(Vaut) = B(V ∗),
the allocation delivered at V ∗ is thus optimal also for all v < V ∗ (it satisfies promise keeping
and achieves the optimal value for the objective). So for all v < V ∗ the promise keeping
constraint is slack. Moreover, participation is slack for at least one z by the fact that
promised utility is equalized across states, while the outside option is strictly increasing
in z. It follows then that optimality requires u(z) = Umin. To see that this must follow,
suppose that u(z) > Umin at some z, which implies that u(z) > Umin for all z given the fact
utility is equalized across states in the optimal allocation at V ∗. As promise keeping and
participation is slack for at least one z, it is feasible to lower u(z) without lowering capital.
As this increases the objective function, optimality requires u(z) = Umin for all z. From the
promise keeping constraint it follows then that

Umin + βVmax ≥ E(u(z) + βω(z)) ≥ V ∗
⇒ Umin ≥ V ∗ − βVmax ≥ (1− β)V ∗
⇒ Umin ≥ (1− β)U(F (z̄, k∗)) + βEU(F (z, 0))

⇒ Umin > EU(F (z, 0)),

a contradiction.

Having shown that the optimal choice of capital is greater than zero, we now also show
that the optimal choice of utility is always below Umax > Vmax − βVmin.
Lemma 8. For any v ∈ [Vaut, Vmax], u(z) < Umax

Proof. Suppose not, then for some v0 and z, u(z) ≥ Umax. This implies that u(z) + βVmin >
U(F (z̄, k∗)) + βVaut, by the definition of Umax. The participation constraint is slack at z.
Given this, it follows that u(z′) ≥ u(z), or else a reduction in u(z) and an increase in u(z′)
is feasible and would increase the objective function. Hence, all participation constraints
are slack at v0. Strict concavity of the objective thus implies that u(z) = u(z′). Given
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that continuation values are above Vaut, the delivered utility to the country is greater than
Umax + βVaut > Vmax where the last inequality follows by the definition of Umax. The
promise keeping constraint is therefore slack at v0. Moreover, promise keeping is also slack
for all v ∈ [v0, Vmax], as the promised value can be increased without affecting the optimal
allocation. In particular, promise keeping is slack at Vmax. This however contradicts lemma
7.

The next lemma states that either u(z) > Umin for all z, or B′(v) = 0:

Lemma 9. Suppose at a promised utility v the optimal allocation calls for u(z) = Umin for
some z ∈ Z. Then B′(v) = 0.

Proof. By definition, c′(Umin) = 0. That is, it is costless to increase u(z) at the margin if
u(z) = Umin. As B(v) is non-increasing, the optimal response to a small increase in promised
utility leaves the objective function unchanged. Therefore B′+(v) = 0. This, plus the fact
that B(v) is non-increasing and concave, implies that B′−(v) = 0 as well.

Corollary 3. For v > Vmin, the optimal allocation has u(z) > Umin for all z.

Proof. By definition of Vmin and concavity, we have B′−(v) < 0 for v > Vmin. From the
previous lemma, this implies that u(z) > Umin for all z.

We are now ready to prove differentiability of the value function.

Lemma 10. The value function B(v) is differentiable at all v.

Proof. For v ∈ [Vaut, Vmin), B(v) is constant and therefore the derivative is zero. If at
v = Vmin, there exists a u(z) = Umin, then the derivative is zero at Vmin as well by lemma 9.
Therefore, in the remainder of the proof we consider the case in which u(z) > Umin for all z
given v = Vmin.

To prove differentiability for v ∈ [Vmin, Vmax], we appeal to the Benveniste-Scheinkman
Theorem (see Stokey and Lucas, 1989, Theorem 4.10). In order to do so, we construct a
concave, differentiable function W (v) defined on a neighborhood N(v0) of v0 ∈ [Vmin, Vmax] ,
with W (v0) = B(v0) and W (v) ≤ B(v) for v ∈ N(v0). Let (u(z), ω(z), k) denote the optimal
allocation at v0. Define Δv = v−v0. Define Δk = Δv/EFk(z, k) and Δu(z) = Fk(z, k)Δk =
(Fk(z, k)/EFk(z, k)) Δv. Note that Δk and Δu(z) are linear functions of v, given v0. Define

W (v) = E

[
F (z, k + Δk)− (r + δ)(k + Δk)− c(u(z) + Δu(z)) +

1
1 + r

B(ω(z))
]
.

Note that by definition, Δu(z) is such that promise keeping is satisfied and participation
holds at the adjusted capital. To see that W (v) ≤ B(v) for v ∈ N(v0), we show that the
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allocations behind W (v) are feasible or are sub-optimal. By lemma 6, k > 0, so small Δk
does not violate the non-negativity constraint on capital. Moreover, if k = k∗, then by lemma
4 a small increase in k will never lead to an improvement. Similarly, u(z) is always interior,
so small Δu(z) are always feasible. Specifically, the fact that u(z) < Umax follows from 8.
The fact that u(z) > Umin for v > Vmin is the corollary of lemma 9, and we have already
discussed the case of u(z) = Umin for some z following v = Vmin. Therefore W (v) ≤ B(v) for
small Δv, and W (v0) = B(v0). Moreover, W (v) is differentiable and concave in v ∈ N(v0).
Therefore, B(v) is differentiable at v0.

We now show that eventually the continuation values lie above Vmin, and once above
Vmin stay there forever.

Lemma 11. For all v ∈ [Vaut, Vmax], there exists at least one z ∈ Z such that ω(z) > Vmin,
and for v ∈ (Vmin, Vmax], ω(z) > Vmin for all z ∈ Z.

Proof. If ω(z) ≤ Vmin, it is costless at the margin to increase ω(z). Optimality therefore
requires that u(z) = Umin whenever ω(z) ≤ Vmin. Otherwise, we could strictly improve the
allocation by reducing u(z) and raising ω(z). Corollary 9 then implies that ω(z) > Vmin for
all z ∈ Z when v ∈ (Vmin, Vmax], which is the last statement of the lemma.

Now suppose that v ∈ [Vaut, Vmin]. To see that there exists at least one z ∈ Z such that
ω(z) > Vmin, suppose on the contrary that ω(z) ≤ Vmin for all z. It is costless in this case to
increase all ω(z) at the margin. Therefore, capital can be increased at zero additional cost.
Optimality then requires that k = k∗. As u(z) = Umin if ω(z) ≤ Vmin, participation requires
Umin + βω(z̄) ≥ U(F (z̄, k∗)) + βVaut. However, Vmin ≥ Umin + βVmin ≥ Umin+ βω(z̄), where
the second inequality follows from the premise that ω(z̄) ≤ Vmin. Taken together, we have
Vmin ≥ U(F (z̄, k∗)) + βVaut = V ∗, which contradicts lemma 7.

We now show that the value function is strictly concave for v ≥ Vmin.
Lemma 12. The value function B(v) is strictly concave for v ∈ [Vmin, Vmax].

Proof. Consider v1 and v2, both in [Vmin, Vmax] with v1 
= v2. Recall that for any v ∈
[Vmin, Vmax], the promise keeping constraint holds with equality. Let (ui, hi) denote the
infinite sequence of utils and h corresponding to the optimal allocations given promised
value vi, i = 1, 2. Therefore,

B(vi) =
∑
t≥1,zt
π(zt) 1

(1 + r)t−1

[
hi(zt−1) + g(zt)− c(ui(zt))

]
,

for i = 1, 2. Let uα = αu1 + (1 − α)u2, hα = αh1 + (1 − α)h2, and vα = αv1 + (1 − α)v2
for α ∈ (0, 1). The fact that promise keeping holds with equality and v1 
= v2 requires that
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u1(zt) 
= u2(zt) under some history zt. Linearity of the objective function with respect to h
and strict convexity with respect to c(u) therefore implies that the allocation (uα, hα) yields a
payout strictly greater than αB(v1)+(1−α)B(v2). Moreover, the convexity of the constraint
set implies that (uα, hα) satisfies all constraints for a promised value vα. Therefore, (uα, hα)
is feasible from vα, implying B(vα) > αB(v1) + (1− α)B(v2).

Corollary 4. Let gx(v) denote the optimal policy for x = u(z), ω(z), and h, given promised
value v. Then gx(v) is single valued and continuous for v ∈ [Vaut, Vmax].

Proof. That policies are single valued follows directly from the fact that we are maximizing
a strictly concave objective function subject to a convex constraint set. The Theorem of the
Maximum states that policies are upper hemi-continuous. Single valuedness then implies
continuity. Note that all gω(z) ∈ [Vaut, Vmin] are in a sense equivalent promises, as the
delivered utility will be Vmin. The uniqueness result therefore uses the convention in this
range that promised utility corresponds to delivered utility.

Lemma 13. For any v, there exists non-negative multipliers (γ, λ(z)) such that in an optimal
allocation (u(z), ω(z), h) we have that

c′(u(z)) = γ +
λ(z)
π(z)

B′(ω(z)) = −β(1 + r)
(
γ +
λ(z)
π(z)

)

EFk(z,K(h))− (r + δ) =
∑
z

λ(z)U ′(F (z,K(h)))zfk(K(h))

with complementary slackness conditions

λ(z)
(
U(F (z,K(h))) + βVaut − u(z)− βω(z)

)
= 0

γ
(
v −∑

z

π(z)(u(z) + βω(z))
)

= 0.

The envelope condition is

B′(v) = −γ
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Proof. The Lagrangian is

L = −∑
z

π(z)
[
h + g(z)− c(u(z)) + 1

1 + r
B(ω(z))

]

+
∑
z

λ(z)
(
U(F (z,K(h))) + βVaut − u(z)− βω(z)

)

+γ
(
v −∑

z

π(z)(u(z) + βω(z))
)

+
∑
z

η(z)(Umin − u(z)) +
∑
z

μ(z)(ω(z)− Vmax) + κ(h− h∗)

The last three terms correspond to the constraints u(z) ≥ Umin, ω(z) ≤ Vmax and h ≤
EA(z)f(k∗) − (r + δ)k∗ ≡ h∗, respectively. Recall that we have already proved that the
optimal allocation requires u(z) < Umax, ω(z) > Vaut and h > 0, and so the corresponding
constraints on u(z), ω(z), and h can be omitted.

The envelope condition follows directly. The first order conditions are:

c′(u(z)) = γ + λ(z) + η(z)
π(z)

B′(ω(z)) = −β(1 + r)
(
γ + λ(z)
π(z)

)
+ (1 + r)μ(z)

1 =
∑
z

λ(z)U ′(F (z,K(h)))Fk(z,K(h))K ′(h) + κ

The last condition can be written as

1/K ′(h) =
∑
z

λ(z)U ′(F (z,K(h)))Fk(z,K(h)) + κ/K ′(h)

where 1/K ′(h) = EFk(z,K(h)) − (r + δ). If h = h∗, then 1/K ′(h) = κ/K ′(h) = 0 and
λ(z) = 0. If h < h∗, then κ = 0. Hence κ/K ′(h) = 0 and the last condition becomes

EFk(z,K(h))− (r + δ) =
∑
z

λ(z)U ′(F (z,K(h)))Fk(z,K(h))

We now show that η(z) = 0 and μ(z) = 0. If u(z) > Umin, then η(z) = 0 by complemen-
tary slackness. If u(z) = Umin then the fact that c′(Umin) = 0 and the first order condition
for flow utility imply that γ = λ(z) = η(z) = 0. Hence η(z) = 0.

To show that μ(z) = 0, note that for v = Vmax, we have that λ(z) = 0, K(h) = k∗,
u(z) = ū and ω(z) = ω̄ for some ū and ω̄ such that ū+ βω̄ = Vmax and B′(Vmax) = −c′(ū),
where this last step follows from the envelope and the first order condition for flow utility
together with λ(z) = 0.
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Now, to generate a contradiction, suppose that for some v we have μ(z) > 0. The fact
that μ(z) > 0 implies that ω(z) = Vmax and

B′(Vmax)− β(1 + r)B′(v) = (1 + r)
(
μ(z)− βλ(z)

π(z)

)
.

where we have used the envelope condition. Given concavity and the fact that β(1 + r) ≤ 1,
it follows that B′(Vmax)− β(1 + r)B′(v) ≤ 0 and so β λ(z)

π(z) ≥ μ(z). And so μ(z) > 0 implies
λ(z) > 0. Note as well that −c′(ū) ≡ B′(Vmax) = −β(1 + r)c′(u(z)) + (1 + r)μ(z). Again
β(1 + r) ≤ 1, implies that c′(ū) < c′(u(z)) and u(z) > ū.

From the binding participation constraint:

u(z) + βVmax = U(F (z,K(h))) + βVaut

but u(z) + βVmax > ū + βω̄ = Vmax = U(F (z̄, k∗)) + βVaut > U(F (z,K(h))) + βVaut. A
contradiction. So μ(z) = 0.

The preceding lemmas complete the proof of Proposition 3. Specifically, part (i) is lemma
10; part (ii) is lemma 7; part (iii) is lemma 12; and part (iv) is lemma 13 substituting back
in k = K(h).

Proof of Proposition 4

Proof. Part (i) is lemma 4. Part (ii) is lemma 4. Part (iii) follows from the first order
conditions and the envelope condition, as well as the strict convexity of c(u). For part (iv),
note that the first order conditions imply that if utility varies across states or if B′(ω(z))
varies across states, then at least one λ(z) > 0, hence the first order condition for capital
implies that capital is below the first best. Part (v) is lemma 11.

We will use the following lemma for Propositions 5 and 7:

Lemma 14. Let λ(z|v) denote the multiplier on the participation constraint in state z given
a promised value v. Suppose the optimal allocation for promised values v1 and v2 is such
that h(v1) > h(v2), then there exists at least one z ∈ Z at which λ(z|v1) < λ(z|v2).

Proof. From the first order condition we have

1 =
∑
z

λ(z|vi)U ′(F (z,K(hi)))Fk(z,K(hi))K(hi),
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for i = 1, 2. Differencing and re-arranging, we have

0 =
∑
z

[λ(z|v1)− λ(z|v2)]U ′(F (z,K(h1)))Fk(z,K(h1))K(h1) (32)

+
∑
z

λ(z|v2) [U ′(F (z,K(h1)))Fk(z,K(h1))K(h1)− U ′(F (z,K(h2)))Fk(z,K(h1))K(h2)] .

Assumption 7 implies that U ′(F (z,K(h)))Fk(z,K(h))K(h) is increasing in h. That is,
U ′(F (z,K(h1)))Fk(z,K(h1))K(h1) > U ′(F (z,K(h2)))Fk(z,K(h2))K(h2), for all z. More-
over, λ(z|v2) ≥ 0 for all z, and the fact that h2 < h1 ≤ h∗ implies that at least one
λ(z|v2) > 0. Therefore, the second term in the above expression is strictly positive. There-
fore, this plus the fact that U ′(F (z,K(h1)))Fk(z,K(h1))K(h1) > 0 implies there exists at
least one z such that λ(z|v1) < λ(z|v2).

Proof of Proposition 5

Proof. For (i), let v1 > v2. To generate a contradiction, suppose h(v1) < h(v2). From Lemma
14, there exists at least one z ∈ Z, call it z′, such that λ(z′|v1) > λ(z′|v2). Concavity of
B(v) implies γ(v1) ≥ γ(v2). The first order conditions then require ω(z′|v1) > ω(z′|v2) and
u(z′|v1) > u(z′|v2). This implies that the total utility delivered in z′ (that is, u(z′) +βω(z′))
is greater following v1 than v2. The premise of the contradiction is that h(v1) < h(v2), which
implies that the participation constraint is easier to satisfy. Therefore, the participation
constraint in state z′ following (v1) must be slack. This implies that 0 = λ(z′|v1) ≤ λ(z′|v2),
which is a contradiction.

We now rule out h(v1) = h(v2) if h(v2) < h∗. To generate a contradiction, suppose
that h(v1) = h(v2) < h∗. By strict concavity, γ1 > γ2. From (32), h(v1) = h(v2) requires
λ(z|v1) = λ(z|v2), for all z ∈ Z. To see this, if λ(z|v1) > λ(z|v2) at some z, then the fact that
γ1 > γ2 and the first order conditions imply that delivered utility is higher in z following v1
than v2. As the capital is the same under the premise, this implies that participation is slack
in state z following v1, or λ(z|v1) = 0 ≤ λ(z|v2), a contradiction. Therefore, the only way
(32) can hold is for λ(z|v1) = λ(z|v2), for all z ∈ Z. Therefore, the fact that γ1 > γ2 and
the first order conditions imply that u(z) and ω(z) is strictly greater in all z ∈ Z following
v1 than following v2. This implies that λ(z|v1) = 0, ∀z ∈ Z, which implies h(v1) = h∗, a
contradiction.

For (ii), the fact that −B′(gω(z)(v)) = β(1 + r)c′(gu(z)) and concavity ensures that gω(z)

moves one-for-one with gu(z). We therefore focus on gu(z). The first order condition (16) and
the envelope condition imply c′(gu(z)) = −B′(v) + λ(z)/π(z). Strict concavity of B implies
that −B′(v) is strictly increasing. If λ(z) = 0, this proves the claim as λ(z) cannot fall below
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zero. If λ(z) > 0, then the participation constraint binds and k < k∗. Binding participation
and the fact that k is strictly increasing in v if k < k∗ implies that gu(z) is strictly increasing
in v.

For (iii), we first show that promised continuation values are non-decreasing in z. The
fact that U(F (z,K(h))) is strictly increasing in z implies that either u(z1) + βω(z1) >
u(z0) + βω(z0) for z1 > z0, or that λ(z0) = 0. If the former, the fact that c′(u(z)) =
−β(1 + r)B′(ω(z)) and strict convexity of c(u), imply that u(z1) + βω(z1) > u(z0) + βω(z0)
requires ω(z1) ≥ ω(z0). In the case that λ(z0) = 0, we have that λ(z1) ≥ λ(z0) and (17) plus
the concavity of B gives the result.

We now show that gω(z̄)(v) > gω(z)(v) for v < V ∗. Consider the set Z ′ ⊆ Z such that
λ(z) > 0 if z ∈ Z ′. As v < V ∗ there exists at least one z such that λ(z) > 0, and therefore Z ′

is not empty. As U(F (z,K(h)))+βVaut is strictly increasing in z, then so is u(z)+βω(z) for
z ∈ Z ′. As c′(u(z)) = −B′(ω(z)) and the strict concavity of B(v) on the relevant domain, we
have that ω(z) is strictly increasing in z for z ∈ Z ′. Moreover, the first order condition for
ω(z) implies that ω(z′) > ω(z) if z′ ∈ Z and z ∈ Z − Z ′. This implies that the distribution
of ω(z) is not a single point. The fact that ω(z) is non-decreasing in z over the entire set Z
then implies the result.

A.5 Proof of Proposition 7

Proof. We focus on the invariant distribution of v. The invariant distribution of k follows
immediately from the policy function gk(v). The policy function gω(z′)(v) and the transition
function for z induce a first-order Markov process for v. As gω(z′)(v) is continuous, the
transition function has the Feller property (see Stokey and Lucas, 1989, Exercise 8.10).
Theorem 12.10 of Stokey and Lucas (1989) implies that there exists an invariant distribution.

To show that any invariant distribution is bounded above by V ∗: As β(1 + r) < 1 and
the participation constraints are slack at V ∗ by definition, we have gω(z′)(V ∗) < V ∗, ∀z′ ∈ Z.
As gω(z′)(v) is monotonic in v, then gω(z′)(v) < V ∗, ∀v ∈ [Vaut, V ∗]. This proves that the
invariant distribution lies below V ∗. As gk(v) is a function of v, the invariant distribution
of v generates a corresponding distribution for k. As gk(v) is increasing in v for v < V ∗ and
gk(V ∗) = k∗, this implies that invariant distribution of k lies below k∗.

The fact that the invariant distribution is non-degenerate follows from the above fact
that elements of the invariant distribution are less than V ∗ and Proposition 5.

To show that the invariant distribution is unique, we prove that there exists a “mixing
point” ṽ and an N ≥ 1 such that there is strictly positive probability that v ≥ ṽ and strictly
positive probability v ≤ ṽ after N periods starting from any point in [Vmin, Vmax]. The result
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then follows from Theorem 12.12 of Stokey and Lucas (1989). Define v to be the highest
v ∈ [Vaut, Vmax] such that gω(z)(v) = v. That is, v is the highest v at which the policy function
for ω(z) crosses the 45 degree line. Such a v exists as the policy function is continuous and
maps [Vaut, Vmax] into itself and from (ii) we know v < V ∗. Define v̄ to be the smallest v
such that gω(z̄)(v) = v, that is the smallest fixed point of the policy function for z̄. We now
show that v̄ > v, that is, any fixed point of the policy function for z̄ is greater than the fixed
point of the policy function for z. Suppose not. From Proposition 5, we know that v̄ 
= v.
Therefore, the premise implies that v̄ < v. The fact that k(v) is strictly increasing in v for
v < V ∗ implies that k(v) > k(v̄). From Lemma (14), this implies that for at least one z′ ∈ Z
we have λ(z′|v̄) > λ(z′|v). Now at the fixed points of the policy functions, the first order
conditions and the envelope conditions imply

−B′(v) = β(1 + r)
1− β(1 + r)

λ(z|v)
π(z)

−B′(v̄) =
β(1 + r)

1− β(1 + r)
λ(z̄|v̄)
π(z̄)

.

By concavity and v > v̄, this implies λ(z|v)/π(z) ≥ λ(z̄|v̄)/π(z̄). The fact that u(z) is
increasing in z (Proposition 5) implies that λ(z|v)/π(z) are increasing in z and therefore
λ(z|v)/π(z) ≥ λ(z|v)/π(z) and λ(z̄|v̄)π(z̄) ≥ λ(z|v̄)/π(z), for all z ∈ Z. This implies that
λ(z|v) ≥ λ(z|v̄), ∀z ∈ Z, which contradicts the existence of a z′ such that λ(z′|v̄) < λ(z′|v).
Therefore, v̄ > v. Select ṽ to be the midpoint of the interval [v, v̄]. Iterating on the highest
shock policy function starting from any v, a long enough but finite sequence of high shocks
will result in v ≥ ṽ. Similarly, using the lowest shock policy function and starting from any
v, a finite sequence of low shocks will bring v below ṽ. Therefore, ṽ is a mixing point, and
a unique stationary distribution follows.

A.6 Section 5 Proofs

Proof of Proposition 8

Proof. The problem with linear utility can be written

B(v) = max
c(z),ω(z),h

E

[
h+ g(z)− c(z) +

1
1 + r
B(ω(z))

]
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subject to

v ≤ E [c(z) + βω(z)]

F (z,K(h)) + βVaut ≤ c(z) + βω(z), ∀z ∈ Z
0 ≤ c(z), ∀z ∈ Z,

where as before we let h = EA(z)f(k) − (r + δ)k replace k ∈ [0, k∗] as the choice variable
and K(h) = k. By definition, F (z,K(h)) is a convex function of h. Standard arguments
imply that B(v) is bounded, non-decreasing, and concave. Concavity implies that B(v) is
differentiable almost everywhere, but perhaps not differentiable at all points.

We proceed by considering the relaxed problem, in which we ignore the non-negativity
constraint on consumption. Let BR(v) denote the corresponding value function. Note that
the optimal h and c(z) are interior. The fact that h > 0 follows from lemma 6, which
did not require concavity of the utility function. The c(z) are interior by definition of the
relaxed problem. An argument along the lines of lemma 10 implies that BR(v) is everywhere
differentiable. Similarly, h is increasing in v, and strictly increasing if v < V ∗ (that is, if
K(h) < k∗). This implies that BR(v) is strictly concave for v < V ∗. In particular, B′R(v) = 0
for v < Vmin, B′R(v) = −1, for v > V ∗, and B′R(v) is strictly decreasing in v for v ∈ (Vmin, V ∗).

We now state the first order conditions of the relaxed problem. Let γR denote the
multiplier on the promise keeping constraint and λR(z) the multiplier on participation. The
first order conditions are

1− γR =
λR(z)
π(z)

B′R(ω(z)) = −β(1 + r)
(
γR +

λR(z)
π(z)

)

E

[(
1− λR(z)
π(z)

)
Fk

]
= r + δ

Substituting the first condition into the second yields, B′R(ω(z)) = −β(1 + r). Let ṽ be such
that B′R(ṽ) = −β(1+r). The fact that β(1+r) < 1 implies that ṽ ∈ (Vmin, V ∗) and therefore
ṽ is unique given strict concavity on this domain. In the relaxed problem, the continuation
utility is always ṽ.

Now consider the case in which promised utility is ṽ. In this case, the envelope condition
implies B′R(ṽ) = −γR = −β(1 + r). Therefore, the first and final first order conditions imply
EFk = (r + δ)/(β(1 + r)). That is, k = k̃. Note that λ(z) > 0 for all z, so participation
and promise keeping together imply ṽ = EF (z, k̃)+βVaut. Solving for consumption, we have
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c(z) = F (z, k̃) + βVaut − βṽ = F (z, k̃)− βEF (z, k̃) + β(1− β)Vaut.
Note that this allocation will be optimal for promised utility ṽ in the original problem

(including the non-negative consumption constraints) if c(z) ≥ 0 for all z ∈ Z. Using
the above expression for consumption, c(z) ≥ 0 if F (z, k̃) ≥ βEF (z, k̃) − β(1 − β)Vaut, or
F (z, k̃) ≥ βE

[
F (z, k̃)− F (z, 0)

]
, where we have used Vaut = EF (z, 0)/(1 − β). This holds

for all z by the premise of the proposition. Therefore, B(ṽ) = BR(ṽ) and if the economy
reaches a promised utility ṽ it will stay there forever. Moreover, B(v) ≤ BR(v) for all v,
given the fact that BR refers to the value function for the relaxed problem. It follows that
B′+(ṽ) ≤ B′R(ṽ) = −β(1+r) and B−(ṽ) ≥ −β(1+r). The fact that BR(v) is strictly concave
at ṽ implies that B(v) must also be strictly concave at ṽ. Therefore, ṽ is the unique v such
that B′+(v) ≤ −β(1 + r) ≤ B′−(v).

Now consider the first order conditions for the original problem for arbitrary promised
utility v, letting γ, λ(z), and μ(z), be the multipliers associated with promise keeping,
participation, and non-negativity, respectively. The first order conditions are:

1− γ =
λ(z) + μ(z)
π(z)

B′+(ω(z)) ≤ −β(1 + r)
(
γ +
λ(z)
π(z)

)
≤ B′−(ω(z))

E

[(
1− λ(z)
π(z)

)
Fk

]
= r + δ

If c(z) > 0 at some z, then μ(z) = 0. This implies that λ(z)/π(z) = 1− γ, and substituting
into the second equation we have B′+(ω(z)) ≤ −β(1 + r) ≤ B′−(ω(z)). From the above, this
implies that ω(z) = ṽ. As c(z) cannot equal zero at all points in all histories given promise
keeping, with probability one there will be a history such that v = ṽ, and the promised
utility will stay at ṽ with associated capital k̃ thereafter.

Proof of Corollary 1

Proof. It follows directly by substituting F (z, k) = f(k) + g(z) into the condition of Propo-
sition 8.
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Proof of Lemma 3

Proof. From the proof of Proposition 8 we know that c(z) = F (z, k̃)−βEF (z, k̃)+βEF (z, 0).
Plugging back into the Bellman evaluated at the stationary value we have that

B(ṽ) = E

[
F (z, k̃)− (r + δ)k̃ − c(z)

]
+ 1

1 + r
B(ṽ)

Solving out for B(ṽ) while using the consumption function above and that EFk(z, k̃) =
(r + δ)/(β(1 + r)), the result follows.

Proof of Proposition 9

Proof. Recall that the first order conditions for the linear problem evaluated at the steady
state are:

1− γ =
λ(z) + μ(z)
π(z)

B′+(v̂) ≤ −β(1 + r)
(
γ +
λ(z)
π(z)

)
≤ B′−(v̂)

E

[(
1− λ(z)
π(z)

)
Fk

]
= r + δ,

where we have replace ω(z) with v̂, as implied by the fact that v̂ is a steady state. The fact
that v̂ is a steady state implies that at least one c(z) > 0. That is, μ(z) = 0 for some z.
Therefore, the first two conditions can be combined to imply that B′+(v̂) ≤ −β(1 + r).

We first show that k̂ ≥ k̃, where k̃ is defined by EFk(z, k̃) = (r + δ)/(β(1 + r)). That is,
EFk(z, k̂) ≤ (r+δ)/(β(1+r)). To see this, consider the optimal allocation for a small increase
in v from v̂. One feasible response is to increase capital by Δk = Δv/EFk(z, k̂), where
Δv = v− v̂ > 0. To satisfy participation, increase c(z) by Fk(z, k̂)Δk. Taking expectations,
this satisfies promise keeping as well. The net return on this perturbed allocation is −(r +
δ)Δk = −(r + δ)/EFk(z, k̂)Δv. As this perturbation is feasible, optimality implies that
B′+(v̂) ≥ −(r+ δ)/EFk(z, k̂). As B′+(v̂) ≤ −β(1 + r), we have β(1 + r) ≤ (r+ δ)/EFk(z, k̂),
or EFk(z, k̂) ≤ (r + δ)/(β(1 + r)).

We next show that at v̂, the participation constraints bind with equality for all z. To see
this, suppose that λ(z′) = 0 for some z′ ∈ Z, and we will generate a contradiction. That is,
suppose c(z′)+βω(z′) = c(z′)+βv̂ > F (z′, k̂)+βVaut. Consider a small deviation in promised
utility Δ < 0. For small enough Δ, the change in the value function will be B′−(v̂)Δ. Now
consider the following alteration to the optimal allocation at v̂. Reduce ω(z′) by Δ/(π(z′)β),
and keep all other allocations (including capital) the same. For small enough Δ, this satisfies
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participation (and does not violate the lower bound for ω(z) of Vaut as v̂ > Vmin > Vaut).
Moreover, it yields a change in promised value of Δ, satisfying promise keeping. Therefore,
it is a feasible, but perhaps not optimal, allocation at ṽ + Δ. The change in utility for the
foreigner from this perturbation is B

′−(ω(z′))Δ
β(1+r) = B′−(v̂)Δ

β(1+r) . Optimality implies that

B′−(v̂)Δ ≥ B
′−(v̂)Δ
β(1 + r)

.

As Δ < 0, we have

−B′−(v̂) ≥ −B
′−(v̂)

β(1 + r)
.

As β(1 + r) < 1, and B′−(v̂) 
= 0 as v̂ > Vmin, we have

−B′−(v̂) ≥ −B
′−(v̂)

β(1 + r)
> −B′−(v̂),

a contradiction.
Given that participation binds at every z given promised utility v̂, we have c(z) +

βv̂ = F (z, k̂) + βVaut. Taking expectation and applying promise keeping, we have v̂ =
E

[
F (z, k̂) + βVaut

]
. Substituting in at z = z, we obtain c(z) + βE

[
F (z, k̂) + βVaut

]
=

F (z, k̂) + βVaut. Using Vaut = EF (z, 0)/(1− β), this can be written:

c(z) + βE
[
F (z, k̂)− F (z, 0)

]
= F (z, k̂). (33)

As c(z) ≥ 0, we have
βE
[
F (z, k̂)− F (z, 0)

]
≤ F (z, k̂). (34)

Considering the optimal allocation at v̂, we consider two cases in turn: (i) c(z) > 0
and (ii) c(z) = 0. In the case of (i), c(z) > 0 for all z and so μ(z) = 0 ∀z ∈ Z. The
first order conditions imply that k̂ = k̃ and v̂ = ṽ. Then equation (34) implies that
βE
[
F (z, k̃)− F (z, 0)

]
≤ F (z, k̃), and the proposition holds.

Suppose now that (ii) c(z) = 0. In this case, (33) implies that βE
[
F (z, k̂)− F (z, 0)

]
=

F (z, k̂). Define
H(k) ≡ βE [F (z, k)− F (z, 0)]− F (z, k).

The proposition is true if H(k̃) ≤ 0. Given that H(k̂) = 0 and k̂ ≥ k̃, it is sufficient to
prove that H ′(k) ≥ 0 for all k. Note, however, that since EF (z, k) = E [A(z)f(k) + g(z)],
we have H ′(k) ≷ 0 ⇔ βEA(z) ≷ A(z), which does not depend on k. Moreover, the fact
that F (z, 0) > 0 implies that H(0) < 0. The fact that H(0) < 0 and H(k̂) = 0 implies that
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H ′(k) > 0 for all k. Therefore, H(k̃) < 0 and the proposition is proved.

Proof of Proposition 10

Proof. The Lagrangian of the problem is

∞∑
t=0
βt

⎡
⎣∑
zt

π(zt)U
(
c
(
zt
))

+

+
∑
zt−1
π(zt−1)γ

(
zt−1
)∑
z∈Z
π(z)

{
F (z, k(zt−1))− c(z|zt−1)− (r + δ)k(zt−1)

} ⎤⎦,

where zt−1 evaluated at t = 0 refers to the initial information set. The first-order conditions
for the maximization of the Lagrangian are

U ′
(
c
(
zt
))

= γ
(
zt−1
)
, and∑

z

π(z)Fk
(
z, k
(
zt−1
))

= r + δ,

where the first condition implies that c ({zt, zt−1}) = c ({z′t, zt−1}) for all (zt, z′t) ∈ Zt × Zt
and the second condition implies k(zt−1) = k� and ∑z∈Z π(z)τ (zt)Fk(z, k(zt−1)) = 0.

Proof of Proposition 11

Follows directly from the inspection of the problem.

Proof of Proposition 12

Proof. Note that the full commitment and the deviation allocations are independent of the
value of β. Let c∗ denote consumption under commitment. That is c∗ = E[F (z, k�) − (r +
δ)k�]. Define the difference in the present discounted value of utility under the commitment
allocation and autarky as Δ(β):

Δ(β) ≡ E

∞∑
s=0
βs+1[U(c∗)− U(F (z, 0))] =

β
(
U(c∗)− EU(F (z, 0))

)
1− β

Note that U(c∗) > EU(F (z, 0)). This is so because k∗ > 0 and the fact that c∗ is the optimal
plan. Therefore, the value in the numerator is strictly positive. This implies that Δ(β) is
strictly increasing in β, is equal to zero when β = 0 and approaches infinity as β approaches
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one. We can write the participation constraints at the commitment allocation as

U(c∗)− U(F (z, k∗)) ≥ −Δ(β). (35)

As the right-hand side of (35) is strictly increasing in β, and the left-hand side does not vary
with β, if this constraint is satisfied at β, then it is satisfied at any β ′ > β. When β = 0,
the right-hand side of (35) is zero and the constraint will not hold for some z. When β → 1,
the right-hand side of (35) approaches minus infinity, implying there is a β∗ < 1 for which
all the participation constraints are satisfied at the full commitment allocation for β ≥ β∗,
and at least one constraint is violated at the full commitment allocation for β < β∗.

The remainder of the proposition follows directly.
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