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Abstract

Sociological research often examines the effects of social context with hi-
erarchical models. In these applications, individuals are nested in social
contexts—like school classes, neighborhoods or villages—whose effects are
thought to shape individual outcomes. Although applications of hierarchical
models are common in sociology, analysis usually focuses on inference for
fixed parameters. Researchers seldom study model fit or examine aggregate
patterns of variation implied by model parameters. We present an analysis of
Thai migration data, in which survey respondents are nested within villages
and report annual migration information. We study a variety of hierarchical
models, investigating model fit with DIC and posterior predictive statistics.
We also describe a simulation to study how different initial distributions of
migration across villages produce increasing inter-village inequality in migra-
tion.



Sociologists often argue that social context matters. Features of the social

context, not just the characteristics of individuals, help produce aggregate

outcomes like the distribution of economic rewards, or paths of development.

Multilevel designs where individuals are nested within social contexts pro-

vide a strong design for observing both contextual effects and the aggregate

outcomes those effects might produce.

We present an analysis of migration in rural Thailand, in which survey

respondents are nested within villages, providing annual reports on migration

for the 1980s and 1990s. Rural to urban migration has propelled economic

development as rural migrants remit their earnings back to their villages and

return with news of economic opportunities for friends and family members.

Though our data describe thousands of individual migration decisions, our

interest focuses on aggregate differences across villages. The rural northeast

of Thailand varies tremendously in the degree to which villages are integrated

into the urban economies further south. The evolution of inequality in mi-

gration across villages is thus important for our understanding patterns of

poverty and development in the rural areas of countries experiencing rapid

growth.

Hierarchical models provide a valuable tool for studying multilevel soci-

ological data like the Thai migration surveys (Mason, Wong, and Entwisle

1983; Western 1999). In sociology and demography, panel surveys of indi-

viduals and households, survey data from many countries, pooled time series

data from U.S. states and cities, have all been analyzed with hierarchical

models (DiPrete and Forristal 1994). Sometimes, sociological applications

have studied the heterogeneity of parameters across units, though more com-

monly hierarchical models offer a way to account for clustering in inferences

about fixed parameters. In these cases, random effects are a nuisance, inte-
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grated out for correct inference.

Hierarchical models are common in sociology, but applied research of-

ten neglects two important topics. First, sociological analysis of hierarchical

models rarely provides a detailed examination of model fit. In our analysis

of the Thai migration data we study the fit of several alternative models by

comparing DIC and posterior predictive statistics. Model fit is an important

applied topic because often in sociology, theory will be indifferent to alter-

native specifications of random effects. The structure of random effects may

also have important implications for substantive conclusions. In particular,

substantively important aggregate outcomes that are not directly modeled—

like inequality in a response across units or response variable quantiles—may

be sensitive to the specification of random effects. A second limitation of

applied sociological research with hierarchical models is that these aggregate

implications of model estimates typically go unexamined. Our analysis of

rural-urban migration in Thailand examines several hierarchical models. In

our analysis, MCMC computation for hierarchical models provides a conve-

nient framework for studying aggregate patterns of variation by simulating

migration given different hypothetical distributions of covariates.

Introducing the Thai Migration Data

The Thai migration data are based on the Nang Rong surveys1 of men and

women aged 13 to 41, from 22 villages in the Nang Rong district of Northeast-

ern Thailand (Curran, Garip, Chung, and Tangchonlatip 2005). We combine

data from two waves (1994 and 2000) of the life history survey. The 1994

1Nang Rong surveys are conducted by the University of North Carolina and Mahidol

University in Thailand. The data and information about the surveys are available at

http://www.cpc.unc.edu/projects/nangrong.
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wave begins with men and women aged 13 to 35 in 1994, and asks about

respondents’ migration experiences since the age of 13. This design is repli-

cated in 2000: men and women aged 18 to 41 are asked about their migration

behavior starting at the age of 13. Some respondents were living away from

the village at the time of the survey, and they were followed up and inter-

viewed 2. We merge these data with household censuses conducted in 1984,

1994 and 2000 to obtain household and village characteristics. The resulting

data contain information on migration of 6,768 respondents nested within 22

villages over a 16-year time period from 1984 to 2000 (N = 93, 914).

Our interest focuses on how the level of migration in a village might

subsequently promote more migration among individuals. Figure 1 shows the

distribution of village migration rates, ȳjt =
∑

i yijt/njt, from 1984 to 2000.

The survey data are retrospective, and the age distributions vary over time.

The figure displays the migration rates for 18-25 year-old men and women,

the age group that we observe every year. Migration rates generally increase

until 1996. In 1984, around a quarter of young residents in Nang Rong left

their district for at least two months. By 1996, the migration rate for the

region had increased to about 50 percent. In 1996, the Asian financial crisis

precipitated recession in Thailand. Migration rates declined over the next

four years. In some villages, migration declines were particularly steep, with

migration rates falling to around 10 percent. Trends for a high-migration and

low-migration village are also shown in the plot. These trends share some

common features, like the increase in migration in the first decade, and the

2Related project manuscripts report that the success at finding migrants was relatively

high (Rindfuss, Kaneda, Chattopadhyay, and Sethaput 2007). On average, about 44% of

the migrants were successfully interviewed at some point in the six months following the

village surveys.
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Figure 1: Boxplots of annual village migration rates, men and women aged
18 to 25, Nang Rong, Thailand, 1984 to 2000. Migration rates for villages
with the largest and smallest migration rates in 1984 are shown by the trend
lines.
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Figure 2: Scatterplot of village trips and village migration rates, Nang Rong,
Thailand, 1984 to 2000. Villages with the smallest and largest migration
rates in 1984 are indicated separately.

decline from 1996.

Part of our substantive interest focuses on how the accumulation of migra-

tion experiences within villages is associated with an individual’s likelihood of

migration. Migration for an individual may become more likely if they live in

a village in which many others have migrated. This phenomenon, called the

cumulative causation of migration, occurs because prior migration generates

resources or influence that make individuals more likely to migrate (Massey
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1990). Extensive empirical evidence documents how past migration becomes

a primary engine for future migration flows, eventually diminishing the im-

portance of alternative explanations (Garip 2008; Massey and Espinosa 1997;

Massey and Zenteno 1999).

We study the effect of social context, by a constructing a “village trips”

variable that records the number of trips taken in a village in the years pre-

ceding the current year. This variable is standardized to have mean zero

and unit variance. A scatterplot of village trips and annual village migra-

tion rates for the 1984 to 2000 period is shown in Figure 2. In any given

year, villages with the highest migration rates, have a history of high levels

of migration. This pattern is not surprising, but it remains an open empir-

ical question whether a village’s history of migration is associated with an

individual’s likelihood of migration, after accounting for their own history of

migration, their family’s migration history, and other covariates.

To study the effect of village trips for these multilevel data we write several

hierarchical logistic regression models. For respondent i (1 = 1, . . . , ntj) in

village j (j = 1, . . . , 22) in year t (t = 1984, . . . , 2000), yijt denotes the

binary migration outcome, that equals 1 if respondent travels away from the

village for more than two months in the year, and 0 otherwise. Individual

and village-level covariates are collected in vectors, xijt and zjt. In each of

the following logistic regressions, yijt conditional on fixed and random effects

collected in the vector θ, is assumed to be Bernoulli, P (y|θ) = py(1 − p)1−y,

with expectation, E(y) = p and likelihood, L(θ; y) =
∏

P (yijt|θ).

If we consider only the panel aspect of the data design, we can fit a

respondent-level random effect, αi, to allow for the correlation of observations

for the same respondent, yielding the logistic regression:

logit(pijt) = αi + δt + β′

1xijt + β′

2zjt, (1)
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where xijt and zjt represent vectors of individual and village-level covariates,

with corresponding fixed effects β1 and β2. This specification also includes a

time effect, δt that captures the common trend in migration across villages.

The two levels of clustering, by respondent and village, could be modeled

with separate effects, where a village effect captures a migration propensity

that is common to all residents of the same village:

logit(pijt) = αi + γj + δt + β′

1xijt + β′

2zjt (2)

Finally, heterogeneity in village effects over time can be captured with a

village-by-year effect, γjt:

logit(pijt) = αi + γjt + δt + β′

1xijt + β′

2zjt (3)

Given the observed variability in migration trends, this last model seems most

realistic. This model is shown as a directed acyclical graph in Figure 3. The

parameters, µ and σ2, are the means and variances of the hyper-distributions

from which the random effects are drawn. Boxes and ovals denote covariates

and parameters respectively. Full arrows indicate probabilistic dependencies

whereas broken arrows are deterministic relationships. The clustered struc-

ture of the data (individuals within villages for each year) is denoted by

stacked sheets. In this figure, the year sheet is dotted indicating that year-

specific effects will induce correlations among observations from same time

point, though individuals and villages are not nested within years.

The full Bayesian specification requires hyper-distributions for the ran-

dom effects, and proper priors for their hyper-parameters. In our analysis,

the random effects for our three models are each given a normal distribu-

tion. The means are given diffuse normal prior distributions. The precisions

(the inverse variances) are given gamma distributions. The priors, displayed
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Figure 3: Three-level logit model with individual, village and year effects on
individual migration outcome
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Model Random Effects Prior Distributions
(1) αi ∼ N(µα, σ2

α) µα ∼ N(0, 106)
σ−2

α ∼ Ga(.001, .001)

(2) αi ∼ N(µα, σ2

α) µα ∼ N(0, 106)
τ−2

α ∼ Ga(.001, .001)
γj ∼ N(µγ , σ2

γ) µγ ∼ N(0, 106)
σ−2

γ ∼ Ga(.001, .001)

(3) αi ∼ N(µα, σ2

α) µα ∼ N(0, 106)
σ−2

α ∼ Ga(.001, .001)
γjt ∼ N(µγ , σ2

γ) µγ ∼ N(0, 106)
σ−2

γ ∼ Ga(.001, .001)

Table 1: Hyper-distributions and prior distributions for hierarchical logistic
regression models of Thai migration.

in Table 1 are intended to be uninformative so the sample data dominates

estimation of the hyper-parameters. In some applications, precisions have

been sensitive to the prior parameters of the gamma distribution. We ex-

perimented with several alternative priors and obtained essentially the same

results as those reported here.

Regression Results

We can easily explore the model fit and run simulation experiments with

draws from the posterior obtained by MCMC simulation. The results below

are based on 10,000 iterations from parallel chains, after a burn-in of 2,500

iterations. Figure 4 displays the output from the Gibbs sampler for selected

parameters from the village-year model, equation (3). The left panel shows

trace plots of a single chain. The right panel shows the posterior densities

estimated using a kernel smoother. The first row of Figure 4 shows the village

trip coefficient. This effect is relatively slow-mixing compared to other coeffi-

cients and the variance parameters. Still, convergence diagnostics, including
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Table 2: Logistic regression coefficients (standard errors) for hierarchical
models of migration, Nang Rong, Thailand, 1984 to 2000.

Individual Village Village-Year
Village trips .648 (.058) .643 (.074) .664 (.068)
Household trips .113 (.020) .117 (.021) .113 (.021)
Ind. trips 1.457 (.022) 1.455 (.023) 1.462 (.022)
Age -.248 (.041) -.235 (.042) -.243 (.041)
Male .255 (.066) .270 (.076) .265 (.070)
Married -1.181 (.037) -1.179 (.037) -1.186 (.037)
Education .758 (.031) .773 (.031) .762 (.031)
Land -.056 (.018) -.061 (.019) -.052 (.019)
σi 2.600 (.036) 2.576 (.037) 2.607 (.037)
σv - - .398 (.078) -
σvy - - - - .190 (.019)
DIC 61797.200 61784.300 61679.300
pD 4948.770 4938.940 5095.610

Note: N = 93, 914 for 6,768 individual respondents in 22 villages. Deviance is the average

deviance evaluated over all posterior draws.

Gelman and Rubin (1992)’s, indicate convergence for all parameters.

Posterior means and standard deviations for the regression coefficients are

reported in Table 2. These results show the positive association of the village

history of migration with an individual’s migration decision in a given year.

A standard deviation difference in the trips per village nearly doubles odds

of migration for an individual (e.65 ≈ 1.9). A household’s and individual’s

history of migration are also strongly associated with migration. All these

effects are consistent across model specifications. Unsurprisingly, individual

trips is estimated to have the strongest effect on individual migration. Less

expected, however, is the relatively strong effect of the village level of migra-

tion. Covariate effects are also similar across models. Men, the unmarried,

and the more educated are all somewhat more likely to migrate.

Most of the point estimates for the coefficients are insensitive to alterna-

tive specifications of the random effects, still some models may fit the data
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Figure 4: Trace and density plots for parameters from the village-year model.
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better than others. The DIC statistic, proposed by Spiegelhalter, Nicola Best,

and van der Linde (2002), is readily calculated from MCMC output. The DIC

is based on the usual deviance statistic, D(y, θ) = −2 log L(θ; y), evaluated

at the simulated values of the parameters. Like the deviance, better fitting

models have lower DIC statistics. DIC statistics are virtually the same for

the individual and village random effects models. The DIC statistic for the

village-year model, which includes random effects for each village in each

year, is about 100 points lower.

A component of the DIC statistic, the pD, is given by the difference

between the posterior mean deviance and the deviance evaluated at the pos-

terior mean and has been proposed as a measure of the effective number of

parameters of a Bayesian model. The village-year model is the parametrically

most complex and this is reflected in the relatively high pD statistic. The

village year model includes an additional 352 random effect over the village

model, an effective addition of 156 new parameters according to the pD.

Posterior Predictive Checks

The DIC statistic is an omnibus measure of fit and the pD can yield odd

results in some applications. An alternative approach, tailored to the sub-

stantive objectives of the research, examines model predictions for quantities

of key substantive interest (Gelman, Men, and Stern 1996). The posterior

predictive distribution is the distribution of future data, ỹ, integrating over

the posterior parameter distribution for a given model:

p(ỹ|y) =

∫
p(ỹ|θ)p(θ|y)dθ.

To study the posterior predictive distribution the researcher must define a

test statistic which can be calculated from the observed data. Because we

12



are interested in the inequality in migration across villages and over time, we

define the test statistic in year t as,

Rt =
max(ȳjt)

min(ȳjt)
,

the ratio of the largest to the smallest annual village migration rate. A well-

fitting model should yield posterior predictions that track the observed trend

in village inequality in migration.

Figure 5 compares the observed trend in Rt to the 95 percent posterior

predictive confidence interval for Rt under the individual model that include

only respondent-level random effects. The predictive distribution generally

captures the U-shaped trend in inequality in village migration rates. In most

years, the observed level of inequality falls within the predictive interval

indicating that the data are not extreme under the model. Several of the

most extreme observations, however, fall well outside the predictive interval.

The village model adds time-invariant random effects for each village to

the individual model that includes only respondent random effects. Figure 6

shows the posterior predictive interval for the village model. Adding village-

level random effects does little to improve the model’s fit to longitudinal

patterns of inequality in village migration rates. As for the individual model,

several extreme values at the ends of the time series are poorly predicted

under the village model.

Finally, the village-year model adds a random effect for each village in

each year. The posterior predictive distribution in this case covers the ob-

served trend in inequality in all years but one. The flexibility of the village-

year model is reflected in the relatively wide predictive distribution displayed

in Figure 7. Accounting for yearly differences in village effects adds signif-

icantly to predictive uncertainty about possible migration rates. As conse-
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Figure 5: Inequality in village migration, Rt, and the 95 percent confidence
region for the posterior predictive distribution of the individual model.
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Figure 6: Inequality in village migration, Rt, and the 95 percent confidence
region for the posterior predictive distribution of the village model.
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Figure 7: Inequality in village migration, Rt, and the 95 percent confidence
region for the posterior predictive distribution of the village-year model.
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quence, however, the observed trend in inequality is relatively likely under

the village-year model.

Exploring Model Implications with Simulation

The posterior predictive check allows us to study the fit of the model, but like

most applications in sociology, we have not yet examined the implications

of model estimates for understanding aggregate patterns. We explore the

implications of the estimated model for inequality in village migration rates

using simulations. Coefficient estimates show the strong effect of village trips

on individuals’ migration probabilities. Those living in villages with a high

number of prior trips are more likely to migrate. In those villages, more

trips accumulate over time further increasing the likelihood of migration.

This phenomenon, called the cumulative causation of migration, suggests

a dynamic mechanism of stratification in migration patterns across villages

(Massey 1990).

Due to cumulative causation, small initial differences in village trips may

lead to large inequalities in village migration rates over time (Garip 2008).

Our model does not account for the initial distribution of village trips. The

observed distribution of village trips in the data is one among many possible

configurations. To observe the full extent of the implications of our model

for inequality in village migration, we use a simulation exercise.

Keeping the aggregate trips constant, we alter the initial distribution of

trips across villages in the data. We simulate the migration patterns from

1985 to 2000 using the following procedure. For each year, we compute in-

dividuals’ predicted migration probabilities from our estimated model. We

randomly assign migrants based on that probability. We then update the

cumulative individual, household and village trips, and compute individuals’
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expected migration probabilities for the next year. We repeat this proce-

dure many times (N = 1000), and compute average village migration rates

over repetitions. In simulation runs, we take random draws from the MCMC-

generated posterior distribution of the parameters to calculate simulate inter-

village inequality in migration. By drawing from the whole posterior distri-

bution, simulation results reflect posterior uncertainty about parameters.

The pseudo-algorithm is as follows:

1. Distribute the initial number of village trips, Vt0 , across villages j =

1, . . . , J , according to scenario S such that
∑J

j=1
vjt0 = Vt0 .

2. Sample parameters, β̂, from the MCMC-generated posterior distribu-

tion.

3. From the fitted model, logit(p̂) = Xβ̂, obtain predicted probabilities

p̂ijt ∀i, j at time period t.

4. Simulate data y∗ from the fitted model, that is, y∗

ijt+1 ∼ binomial(1, p̂ijt)

∀i, j.

5. Update cumulative independent variables (individual, household and

village trips), xijt+1 = xijt + f(y∗

ijt+1), where f(·) a function transform-

ing migration in t + 1 into trips ∀i, j [BW: OK?].

6. Compute predicted probabilities from the fitted model logit(p∗) = Xβ∗

using the updated independent variables.

7. Increment time period, t = t + 1.

8. Repeat 3-7 T times, that is, generate a path of fitted values for T time

periods.
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Figure 8: Annual migration rates and the 95 percent confidence region in
simulations with maximum and minimum initial inequality in the distribution
of village trips.

9. Repeat steps 2-8 M times independently.

10. Compute typical values (e.g., means) of the predicted probabilities over

the M replications.

This algorithm is repeated for each scenario S of the initial distribution of

village trips.

Figure 8 shows the average migration rate observed in simulations under

two scenarios. With minimum initial inequality, we equally distribute the

19



1985 1990 1995 2000

2
4

6
8

1
0

1
2

Year

R
a
ti
o
 o

f 
M

a
x
/M

in
 V

ill
a
g
e
 M

ig
ra

ti
o
n
 R

a
te

●

●

●

●
●

●

●

●
● ●

●
● ●

●

● ●

●

●

Maximum Initial Inequality

Observed Inequality

Minimum Initial Inequality

Figure 9: Inequality in village migration, Rt, and the 95 percent confidence
region in simulations with maximum and minimum initial inequality in the
distribution of village trips.

20



aggregate number of trips across villages in 1984. With maximum initial

inequality, we assign the total number of trips to one randomly-selected vil-

lage, giving all other villages zero initial trips. Minimum initial inequality

case leads to slightly lower average migration until year 1990, and the two

scenarios are indistinguishable thereafter.

Figure 9 displays the ratio of the largest to the smallest annual village

migration rate, Rt, observed in the data and under the two simulation sce-

narios. In the minimum initial inequality case, since all villages start at the

same point, inequality in village migration rates does not grow over time. In

this case, the cumulative mechanism identified in the model does not lead to

increasing inequality in village migration. By contrast, with maximum ini-

tial inequality, initial inequality increases at a high rate after year 1995. The

observed inequality in the data, expectedly, falls between the minimum and

maximum inequality cases. The two extreme case scenarios provide upper

and lower bounds for the potential inequality outcomes.

Simulation exercise thus links our estimates from the individual-level

model to aggregate patterns of inequality between villages. Depending on

the initial distribution of village trips, in a period of 16 years, the cumula-

tive mechanism identified in our model could sustain or double inequality in

village migration rates.

Conclusion

Hierarchical models are commonly used in sociology, chiefly to study the

effects of social context on individual outcomes. In our application, we ex-

amined the effects of households and villages on rural-urban migration in

northern Thailand. With survey data on individuals at many points in time,

individuals also formed contexts for migration decisions in any particular
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year. In data with this structure, we could specify as many as four hierar-

chies of random effects—at the individual, household, village, and village-year

levels.

The nesting of observations within layers of social context creates data

analytic and substantive challenges. From the viewpoint of data analysis, a

variety of equally plausible models can be specified to capture the multilevel

structure of the data. From a substantive viewpoint, individual outcomes

may aggregate to reshape the contexts in which the actions of individuals

are determined. Though hierarchical models are common in sociology, the

data analytic problem of model comparison, and the substantive problem of

the aggregative effects of individual outcomes are often ignored.

Our analysis takes advantages of MCMC methods to fit hierarchical mod-

els, compare alternative models, and study the aggregate implications of the

models. The problem of model fit was studied with both DIC statistics and

posterior predictive checks. Both approaches yielded similar answers. Migra-

tion models including individual and village random effects fitted similarly

well, but both were inferior to a model that allowed village effects to vary over

time. Though the DIC statistic indicated the superiority of the village-year

model, posterior predictive check showed that this model better captured the

observed trend in inequality in migration across villages.

We conducted a simulation exercise to help aid interpretation of the model

parameters. The simulation experiment showed how the initial inequality in

patterns of migration across villages influenced inequality in migration 16

years later. Inequality in migration nearly doubled where the initial distribu-

tion of migration was highly unequal. Had the initial distribution been equal

across village, this distribution would have remained largely unchanged.

In sum, MCMC computation for hierarchical provides an enormously flex-
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ible tool for analyzing contextual data. Far beyond the problems of estima-

tion and inferences, posterior simulation with MCMC provides an important

basis for data analysis and model interpretation. Though MCMC methods

have so far seen relatively little application, they hold enormous promise for

the analysis of hierarchical models in sociology.
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