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Does the sun shine really shine on the financial markets?

June 2012

Abstract

After a series of papers has provided – partially ambiguous – results on the impact of weather

variables on stock (index) returns, this article studies the impact of weather on a wide vari-

ety of financial market instruments, namely ”risk-free” interest rates, the US corporate bond

market, stock returns, stock index returns and the VIX volatility index. First, we construct a

model that combines asset pricing and results from psychology to show how weather variables

can affect asset prices in different market segments via mood. Second, in our empirical anal-

ysis we use several weather variables from the National Climatic Data Center (NCDC) and

control variables motivated by economic theory. Applying various econometric techniques and

using different market segments (motivated by differences in the risk level and institutional

differences) allows to give a more detailed picture on the impact of weather on financial market

prices. We demonstrate that on none of the market segments analyzed the weather has any

significant impact.

Keywords: Mood Effects, Weather Effects, Behavioral Finance.

JEL: C51, G12, E43.
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1 Introduction

There are different streams of literature analyzing the impact of mood (driven by external

determinants) on financial market data. To be more precise, there are different branches

of literature analyzing if asset prices are related to seasonal affective disorder (SAD) (see

e.g. Kamstra et al. (2000), Kamstra et al. (2003), Garrett et al. (2005), Kamstra (2005),

Kamstra et al. (2009)), sports events (see e.g. Ashton et al. (2003), Edmans et al. (2007)),

the environmental pollution (see Lepori (2009)), the movie program (see Lepori (2010)) or the

weather (see e.g. Saunders (1993) or Hirshleifer and Shumway (2003)). This paper focuses on

the impact of weather on different financial market segments.

There is substantial empirical evidence that the weather affects people’s moods (see e.g.

Goldstein (1972), Persinger (1975), Cunningham (1979), Sanders and Brizzolara (1982), Kals

(1982), Howarth and Hoffman (1984), Parrott and Sabini (1990) or Keller et al. (2005)).

Mood, in turn, can have an impact on the individuals’ accuracy and quality of decision-

making (negative relation detected by Au et al. (2003)), optimism (positive relation, see e.g.

Cunningham (1979), Howarth and Hoffman (1984), Arkes et al. (1988) or Wright and Bower

(1992)), perception of risk (overconfidence) (Johnson and Tversky (1983), Arkes et al. (1988)

or Au et al. (2003)) and risk aversion (Kliger and Levy (2003), Au et al. (2003)). Concerning

the impact of mood on the risk aversion, according to the psychological literature there are

two alternative and counteracting hypotheses: The affect infusion model (see e.g. Forgas and

Bower (1987) or Forgas (1995)) postulates that an improvement in the mood reduces the

risk aversion. By contrast, the mood maintenance hypothesis (see Isen and Patrick (1983) or

Isen and Geva (1987)), often neglected in the Behavioral Finance literature, argues that an

improvement in the mood increases the risk aversion (in order to maintain the positive mood).

For evidence of the mood maintenance hypothesis in a Behavioral Finance context see e.g.

Lepori (2010).

The impact of mood on decision-making may also depend on the situation. Forgas (1995)
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argued that higher complexity and uncertainty increases the impact of mood on decision-

making. Similarly, Slovic et al. (2002) proposed that using affective impressions, rather than

assessing probabilities, to make decisions is much easier in situations involving risk and un-

certainty, especially when the decision is complex. Since financial decisions are very complex

decisions, it is reasonable to conclude that mood plays a role in investment decision-making

and, consequently, asset prices.

Even though the actual weather hardly affects (most) asset fundamentals, it may have

an impact on financial assets’ prices. A possible channel of this effect could be that weather

changes mood which, due to the impact of mood on optimism, risk perception or risk aversion,

changes the supply of and demand for assets in different risk classes. This functional chain

will be studied in this article.

The relationship between weather and stock market returns has been the subject of empir-

ical studies to a recently increasing extent. In this context, different papers show contradicting

results: Saunders (1993) found that the returns on the NYSE were negatively related to cloud

cover in New York City. The higher stock returns on sunny days were supposed to have re-

sulted from the positive mood, induced by good weather, of floor traders and brokers. Other

papers extended the literature by using additional weather variables: Krämer and Runde

(1997) include cloud cover, humidity and barometric pressure. Keef and Roush (2002), Keef

and Roush (2005) and Keef and Roush (2007) investigate the influence of wind, temperature,

rain, humidity, sunshine and cloud cover on stock returns. Dowling and Lucey (2005) evalu-

ate weather effects using cloud, rain, humidity and geomagnetic storms. Goetzmann and Zhu

(2005) include cloud cover, rain and snow, and Theissen (2007) uses cloud cover, sunshine,

rain and temperature.

However, the impact of the weather on stock returns is not undisputed. E.g. Trombley

(1997) for the US stock market and Krämer and Runde (1997) for the German stock market

found that the sunshine effect was less clear than claimed by Saunders. Similarly, Pardo and

Valor (2003) for Spain, Levy and Galili (2008) for Israel and Jacobsen and Marquering (2008)
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for 48 countries reject the hypothesis of weather effects.

Summarizing the growing literature of weather effects on international stock markets, there

is currently no general agreement in literature if there is an impact of weather on stock returns.

However, the results from psychological literature and the findings on the stock market are

significant enough to raise the question whether other market segments are influenced by the

weather. Keef and Roush (2007) integrated fixed income securities into the analysis. They

regressed returns from stock indexes, government bonds and bank bills in Australia on the

weather (sunshine, wind) in Auckland and Wellington.

As the results of existing literature on weather effects on the stock market are ambiguous,

we want to shed more light on this. We start our analysis establishing a theoretical model

of the impact of mood on asset prices. This enables to see the impact of weather/mood on

the stock market returns and volatility, which is required for our empirical analysis. Our

model predicts that if the weather affects the mood and the affect infusion model holds, with

better weather the prices of all risky assets increase, the ex-ante expected returns decrease

and the volatility decreases. These effects are pronounced the more, the higher is the risk of

the respective security.

Based on the theoretical model we examine the impact of weather on different financial

sub-markets, namely risk-free interest rates, corporate bond yield spreads, stock returns, the

S&P 500 returns and the VIX volatility index. By this, we investigate if there are weather

effects on the aggregate market level (risk-free interest rates, S&P 500 returns and VIX) and

on a more disaggregated firm-by-firm or bond-by-bond level (stock returns, corporate bond

yield spreads).

The reasons why we look at a variety of market segments are easily described: First,

psychological literature says that weather-induced changes in mood have an impact on risk

aversion. As stated above, our model claims that the effect of weather on asset prices should

be an increasing function of the asset’s risk. E.g. the impact on stock returns should be

more pronounced than that on corporate bond spreads due to the higher risk. To test this
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hypothesis, we have to study various market segments that differ in the risk level.

Second, the degree of rationality used in decision-making is decreasing with increasing

complexity of the problem (see Conlisk (1996) or MacGregor et al. (2000)). Also, if mood

affects the risk aversion via the affect infusion model or via the mood maintenance hypothesis

depends (among others) on the complexity (see Forgas (1995)). Similarly, the impact of

complexity in the valuation of a security on the significance of sentiment in the price formation

has been described by Baker and Wurgler (2007). Therefore, as the different market segments

analyzed in our study also vary in terms of valuation complexity, it makes sense to look at

each of them.

Third, there are institutional differences between the different market segments. E.g. stock

markets are said to be more dominated by retail investors whereas corporate bond markets are

assumed to be populated more by institutional investors (an effect that is reinforced in our pa-

per as we eliminated small trades from the corporate bond database). Much of the Behavioral

Finance literature detects more irrationality with retail investors than with institutional in-

vestors as retail investors are more independent in their decisions, while institutional investors

are more sophisticated in their decision structures and often trade via algorithmic trading (see

e.g. Grinblatt and Keloharju (2001) or Shapira and Venezia (2001)). In line with this, Shu

(2008) shows for the stock market that weather effects are more prevailing with individuals

than with institutional investors.

Another institutional difference that provides an argument to investigate a variety of mar-

ket segments is that on some of the segments (e.g. the corporate bond market) trading is done

electronically while on other segments (e.g. the stock market analyzed by us) floor trading

occurs. Often electronic trading is said to eliminate any mood effects. E.g. Lepori (2009)

shows that mood changes have an impact on decisions of the trading floor community which

vanishes once the trading floor is replaced by a computerized and decentralized trading system.

Similarly, Shon and Zhou (2009) observe that NYSE stocks are influenced by the weather in

N.Y. while this is not the case for NASDAQ stocks. They argue that this is due to the fact
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that NASDAQ is a decentralized trading platform.

Fourth, omitted variable problems might occur. To give an example: Imagine that the risk-

free rates significantly influence the stock market, but we analyze the impact of the weather

on the stock market without including the risk-free rates as a determinant (similar to some

related literature in this field): If the weather is correlated with the risk-free rates (via mood

and risk aversion), then some of the prediction variables are correlated with the regression

residual. If this is the case the least squares estimate in the stock market regression is biased.

By contrast, if the risk-free rates are independent of the weather, the least squares estimates

are not biased (but still less efficient). A similar example would be the impact of the volatility

index VIX on the corporate bond spreads.

Fifth, if some financial sub-market X is influenced by the weather and the prices on this

sub-market X have an impact on another sub-market Y , then the overall weather effect on

sub-market Y consists of the indirect weather effect (acting via sub-market X) and the direct

weather effect (shown for the weather variables in the regression for sub-market Y ). Thus,

the findings found on sub-market Y have to be interpreted only as the additional effect.

Finally, an impact of the weather on a variety of asset prices and spreads would mean a

higher correlation between different securities and thereby reduce the effects of diversification.

A few words on econometric models for studying weather effects on financial markets:

Based on existing psychological literature and our asset pricing model there should be a

functional chain from weather via mood to asset prices. The problem is that in the empirical

data one does not observe the mood of each market participant. To cope with this problem

we consider weather as a proxy of the unobserved mood. From an econometric point of view

we are facing an ”errors in variables” problem. To cope with this, instrumental variable

estimation will provide us with consistent and unbiased parameter estimates.

Our major findings are summarized as follows: The regression setting has a strong impact

regarding the question whether significant weather effects can be found. This involves the

danger to identify weather effects that do not really exist. Using the appropriate regression
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technique (especially adjusting for heteroscedasticity and instrumental variable estimation),

we cannot identify any weather effects on a five percent significance level. This finding is

stable for the different sub-markets considered.

The paper is structured as follows: In Section 2 we develop an asset pricing model to derive

predictions how a mood variable influences asset prices, returns and volatilities. In Section 3

we describe the data used in our study. Section 4 outlines the methodology and the results.

Finally, Section 5 concludes.

2 Mood and Asset Prices

In this section we consider a general equilibrium setting without production, which will provide

us with the capital asset pricing model (CAPM). We point out that the purpose of this sec-

tion is not to reproduce the CAPM, but to get an understanding of the impact of some mood

variable µ on asset prices, asset returns and asset volatilities. According to the psychological

literature cited in Section 1, µ should be positively affected by improving weather conditions

w.1 In addition we consider a parameter %µ describing the degree of absolute risk aversion.

Following psychological literature the impact of mood µ on risk aversion %µ is ambiguous.

According to the affect infusion model %µ decreases when µ rises, while with the mood main-

tenance hypothesis the opposite is observed. In the neoclassical finance literature the effect

of µ on %µ is (assumed to be) zero or at least not significant. According to Hirshleifer and

Shumway (2003) and the literature cited there mood can also have an influence on the agents’

perception of the payoff distribution, i.e. expected payoffs rise and their perceived variances

decrease with improving mood. This argument can be easily integrated into our model, as

well. Throughout this section we follow Werner and Ross (2000) and Blume (2011). Other

ways to approach the CAPM and to implement it empirically are e.g. provided in Campbell

1In our theoretical model µ and w are treated as scalars to reduce the complexity. An extension to vector
valued mood and weather variables is straightforward. Each component of this vector µ can then be influenced
by some components of the vector of weather variables w. With such an extension the aggregate effect is
obtained by adding up the corresponding partial derivatives.
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et al. (1996) or Cochrane (2005).

Consider an economy with n risky assets paying Φ1, . . . ,Φn units in terms of the con-

sumption good. Assets are traded at the beginning of the period, Φk is realized at the end

of the period. In addition, we assume that there exists a risk-free asset paying Φ0. The ex-

pected payoffs of the risky assets are φ = (φ1, . . . , φn)>. The covariance matrix is denoted

by v. The elements of v are vjk, the diagonal elements are vkk, k, j = 1, . . . , n. For the

risk-free asset φ0 = Φ0. By including the risk-free asset we get the expected payoff vector

φ̃ = (φ0, φ1, . . . , φn)>.

The vector q̃ = (q0, q1, . . . , qn)> is the portfolio chosen by the consumer at the beginning of

the period; qk ∈ R, k = 0, 1, . . . , n; i.e. short selling is permitted. The quantities of the risky

assets held are q = (q1, . . . , qn)>. The expected payoff of the portfolio q̃ is m = q̃>φ̃, the

variance is given by V = q>vq. Given the portfolio q̃ the agents consume q̃>(φ0,Φ1, . . . ,Φn)>

at the end of the period. The aggregate supply of the risky assets is fixed and given by the

vector a = (a1, . . . , an)>. The supply of the risk-free asset is perfectly elastic. The prices

for the risky assets are p = (p1, . . . , pn)>, while when including the risk-free asset we get

p̃ = (p0, p1, . . . , pn)>. This results in the budget set {q̃ ∈ Rn+1|q̃>p̃ ≤ ω}. Without loss of

generality the initial wealth of the consumer is normalized to ω = 1. With q = a we get

the expected payoff and the variance of the market portfolio, mM = a>φ and VM = a>va,

respectively.

The preferences of the representative agent are described by a constant absolute risk aver-

sion (CARA) utility function (see e.g. Mas-Colell et al. (1995)[Chapter 6]).2 The larger %µ

the larger the risk aversion (see e.g. Mas-Colell et al. (1995)[Theorem 6.C.2]). Assuming that

the random vector Φ = (Φ1, . . . ,Φn)> is jointly normal with mean φ and covariance matrix v,

2Our model remains close to traditional asset pricing literature assuming that preferences can be described
by means of a utility function. For von Neumann-Morgenstern expected utility functions resulting in a mean-
variance representation of preferences the reader e.g. is referred to Werner and Ross (2000)[Chapter 19].
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maximizing the expected utility is equivalent to maximizing

uµ(m,V ) = m− %µ
2
V . (1)

Given (1) we observe
∂uµ
∂m = 1 > 0 and

∂uµ
∂V = −%µ/2 < 0, i.e. more expected payoff is

appreciated, while the agent dislikes higher volatility. The mood µ affects the risk aversion

%µ, where
∂%µ
∂µ > 0 corresponds to the mood maintenance hypothesis while

∂%µ
∂µ < 0 describes

the affect infusion model. Given the above assumptions we consider the utility maximizing

problem

max
q̃
uµ(m,V ) s.t. q̃>p̃ ≤ ω = 1 . (2)

(2) yields the Lagrangian L(q̃, ζ) = uµ(m,V ) + ζ(1− q̃>p̃) and the first order conditions:

∂L(q̃, ζ)

∂q0
=

∂uµ(m,V )

∂m
φ0 − ζp0 = 0 ,

∂L(q̃, ζ)

∂qk
=

∂uµ(m,V )

∂m
φk + 2

∂uµ(m,V )

∂V

n∑
j=1

vkjqj − ζpk = 0 , k = 1, . . . , n ,

∂L(q̃, ζ)

∂ζ
= q̃>p̃− 1 = 0 . (3)

Since the numeraire good can be freely chosen in a general equilibrium setup, we choose the

normalization p0 = φ0.
3 Thus, prices are expressed in terms of the risk-free asset. This results

in

3Alternatively, we could choose the normalization p0 = φ0
1+rf

, where rf is motivated by time preferences.

With this alternative normalization the expected return of the risk-free asset would be rf , such that E(rk) =
rf + βk (E(rM )− rf ), i.e. we would get returns in Sharpe-Lintner form. To keep the formal analysis simple we
continue with p0 = φ0. The predictions of the model do not depend on the normalization chosen.
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ζ =
∂uµ(m,V )

∂m
= 1 , −2

∂uµ(m,V )
∂V

∂uµ(m,V )
∂m

= %µ ,

p0 = φ0 = 1 , pk = φk − %µ
n∑
j=1

vkjqj , k = 1, . . . , n . (4)

From the above assumptions on the partial derivatives of the utility function λ :=

−2
∂uµ(m,V )

∂V
∂uµ(m,V )

∂m

> 0. λ is often called market price of risk, while −λ is the marginal rate of

substitution between the expected return and the variance.

To close the model we have to apply the equilibrium condition that asset supply is equal

to asset demand. Since asset supply is fixed this yields (q1, . . . , qn)> = (a1, . . . , an)> or q = a

in vector notation, such that

p0 = φ0 , pk = φk − %µ
n∑
j=1

vkjaj , k = 1, . . . , n , and

q0 =
1

φ0

(
1−

n∑
k=1

akpk

)
=

1

φ0

(
1− a>p

)
. (5)

From the budget constraint and (5) we get the amount of money invested in all risky assets

in the economy, ωa, and the amount invested in the risk-free asset, ωrf :

ωa = a>p and ωrf = 1− a>p . (6)

Based on the discussion at the beginning of this section %µ depends on the mood µ. By

taking the derivative with respect to µ in (5), we obtain the impact of µ on the prices. The

expected payoffs φ, the covariance matrix v, the asset supply a and VM are constants.4 Given

4Given our utility function, the effect of µ on λ can be obtained in a straightforward way, as the marginal
rate of substitution is constant for all values (m,V ) ∈ R×R+. With more general utility functions the effects of

11



the affect infusion model, where
∂%µ
∂µ < 0, we obtain the following result: If

∑n
j=1 vkjaj > 0

then

∂pk
∂µ

= −∂%µ
∂µ

n∑
j=1

vkjaj > 0 . (7)

Thus, if the affect infusion model is true, then with improving mood prices of risky assets

increase.5 For the mood maintenance hypothesis this effect goes into the opposite direction.

Remark 2.1. According to psychological literature mood could also affect the agents’ optimism

and risk assessment, thus the perception of the payoff distribution, such that the perceived

expected payoff rises and the perceived variance decreases with improving mood, i.e. ∂φk
∂µ > 0

and ∂
∂µ

∑n
j=1 vkjaj < 0 in formal terms. Augmenting (7) by these two terms shows that ∂pk

∂µ is

amplified if the affect infusion model holds.6 Based on this finding we restrict our analysis to

an investigation of the effects arising from mood on risk aversion, keeping in mind that with

the affect infusion model the results remain the same, if the mood also has an impact on the

expected payoffs and the variance.

Let us investigate the individual asset returns and the market return. Using the above

results the expected return and the variance of asset k is given by

E(rk) =
φk − pk
pk

=
%µ
∑n

j=1 vkjaj

φk − %µ
∑n

j=1 vkjaj
and V(rk) =

vkk
p2k

. (8)

µ on λ need not be that clear. Results with a representation of the preferences where u(m,V ) is not additively
separable are available from the authors on request.

5Since a>va > 0 need not imply that
∑n
j=1 vkjaj > 0 for all k, not all the asset prices have to increase in

general given the affect infusion model. However the aggregate effect aT∇µp = − ∂%µ
∂µ

a>va has to be positive.

∇µp stands for the gradient vector arising from ∂pk
∂µ

, k = 1, . . . , n. In the following discussion we assume that∑n
j=1 vkjaj > 0 for all k.

6The effect with the mood maintenance hypothesis would be counteracted and can also be overcompensated.
Note, that most of the literature investigating the impact of weather (see e.g. Saunders (1993)) or seasonal
affective disorder (see e.g. Kamstra et al. (2003)) on stock prices is based on the affect infusion model and not
on the mood maintenance hypothesis.
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For the risk-free asset we get E(r0) = 0 and V(r0) = 0. Suppose that
∑n

j=1 vkjaj > 0 and

φk > 0. Then if
∂%µ
∂µ < 0, we observe that

∂E(rk)

∂µ
=

1

p2k
·
(
−∂pk
∂µ

pk − (φk − pk)
∂pk
∂µ

)
= − 1

p2k
· ∂pk
∂µ

φk < 0 (9)

and

∂V(rk)

∂µ
= vkk

−2

p3k
· ∂pk
∂µ

< 0 . (10)

Therefore the model predicts that with increasing mood (µ) the expected returns and the

volatilities decrease for all risky assets. Following equations (7), (9) and (10), the higher the

risk measured in terms of
∑n

j=1 vkjaj , the stronger the impact of µ via %µ on the expected

returns and their variances. In the same way as for the individual security k, we can show that

the expected market return and market variance are decreasing with µ, if the affect infusion

model prevails. In addition, one can demonstrate that with the affect infusion model with

improving mood the percentage of money invested in the market portfolio increases and the

percentage invested in the risk-free security decreases (∂ωa∂µ > 0 and
∂ωrf
∂µ < 0 with

∂%µ
∂µ < 0).

Summing up we showed that with CARA preferences the market price of risk λ is equal to

the degree of risk aversion %µ. Suppose that the risk of a security
∑n

j=1 vkjaj > 0 (≈ market

portfolio weighted sum of the covariances of asset k with all assets j and k itself) and the

affect infusion model is true (i.e.
∂%µ
∂µ < 0), then the expected asset returns, the variance of

the asset returns, the expected market return and the variance of the market return decrease

when µ increases. This can be interpreted economically as follows: With improving mood the

risk aversion decreases which results in higher current prices for all risky assets, which - all

other things (especially the future price) equal - creates lower returns in the next period. For

the mood maintenance model the opposite effect takes place.
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In the next step let us connect the above results to our empirical data: In the empirical

analysis we will study different asset returns, interest rates and bond spreads. Our model

predicts that with the affect infusion model the market price of risk (being equal to the risk

aversion coefficient, in our model %µ) is negatively related to the mood variable µ. Thus, for all

the asset classes investigated (bonds, stocks, VIX), the better the mood the higher the price.

As the ”risk-free” interest rates7 and the corporate bond spreads are defined in a forward

looking way (as yields), the better the mood, the higher the prices, thus the smaller the risk-

free rates and the corporate bond yields. As corporate bonds are more risky than ”risk-free”

bonds, the corporate bond spread declines with better mood. For the stock returns, the issue

is more tricky. On the one hand our model takes place in a one period setting providing us

with expected (ex-ante) returns. Let us assume that the model provides us with a simplified

description of the observed capital market where the model is repeated (maybe with different

fundamentals φ̃ and v) for a sequence of periods t = 1, . . . , T . The stock returns studied in

the Behavioral Finance literature, however, are ex-post realized returns:

rkt =
pkt − pk,t−1
pk,t−1

(11)

where pk,t−1 is the past price realization, while the current price pkt should be described by

(5). From this definition we see that the ex-post return is driven by both the actual mood µt

and the previous mood µt−1. Taking partial derivatives in equation (11) with respect to µt

and µt−1 shows that ∂rkt
∂µt

> 0 and ∂rkt
∂µt−1

< 0 when assuming that the affect infusion model

is correct. Therefore, the actual and the lagged variables should be used in the empirical

analysis.

The volatility index VIX is another forward looking variable arising from implied option

volatilities (for a description see Section 3.3). From the model derived above the variance

of the market returns decreases with improving mood, given the affect infusion model, such

7Concerning the risk nature of the ”risk-free” rate observed the reader is referred to the discussion in
Section 3.1.
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that a negative correlation between the VIX and mood can be expected. With the mood

maintenance hypothesis the opposite is true.

In the empirical analysis the investors’ moods can hardly be observed. An empirical study

on an individual level would require for each investor daily data including his transactions and

his mood. This data is not available. On an aggregate level there would be the additional

problem of aggregating individual moods. Thus, we shall consider weather as a proxy of

mood. Since µ could be multivariate, as well, we assume that the unobservable vector of

mood variables is approximated by our set of weather variables. For the securities considered,

we assume that the fundamentals are not influenced by the weather variables.8

We shall also include control variables. With respect to this simple model we can assume

that these control variables (can) influence the ”fundamentals” φ̃ and v in our model above.

Including these effects is important to avoid spurious regression results. In the following the

empirical analysis will test the null hypothesis of no weather effects against the alternative

that the weather influences asset prices.

3 Data

This study investigates the period from July 1, 2002 to March 31, 2006. Note that on pur-

pose we used only data before the financial crisis 2007/08 because it is very plausible that

during/since this tremendous financial crisis fundamental and non-weather behavioral effects

may have dominated any weather-induced mood effects. We use daily data from the US mar-

ket. Excluding holidays and weekends the observation period includes T = 952 days with

data. Appendix B will provide some unit root tests for the data presented in the following

paragraphs.

8Since no agricultural firms or utilities are included in the data set, this assumption seems plausible. The
assumption that the weather variables act as mood proxies provides a further argument to apply instrumental
variable estimation in Section 4.2.
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3.1 Spot Rates and the ”Risk-Free” Term Structure

In this paper the risk-free term structure is used as a dependent variable, as a control variable

and in order to derive the corporate bond spreads. With respect to the risk-free term structure

data we use the USD LIBOR for maturities of 1, 3, 6, 9 and 12 months from Bloomberg as well

as USD swap rates (middle rates) for maturities 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25 and 30

years from Datastream. These swap rates use the 6-month USD LIBOR as floating leg. After

interpolation to get a series of equidistant swap rates at intervals of 6 months, we bootstrapped

this data to obtain continuously compounded spot rates. Based on a selection of this data (the

interest rates for 1, 3 and 6 months as well as 1, 2, 5, 7, 10, 15, 20 and 30 years) we got the

spot rate for any arbitrary maturity by fitting a Svensson (1994) polynomial to the risk-free

term structure data. These spot rates were used when calculating the corporate bonds spreads

(see later). The vector of spot rates for the maturities {1/12, 1/4, 1/2, 1, 2, 5, 7, 10, 15, 20, 30}

years, abbreviated by rF , will be used as a dependent variable.

Moreover, we will use one of these rates as a control variable in all regressions where the

dependent variable is not the risk-free term structure. This can be motivated e.g. by the

results of Longstaff and Schwartz (1995), Duffee (1998), Collin-Dufresne et al. (2001), etc.

showing that the level of the ”risk-free” term structure is a major determinant of corporate

bond spreads. Similarly, concerning stock returns, asset pricing models often include the risk-

free rate as a determinant of asset returns. We also use the risk-free rate as a control variable

in the VIX regressions, because the risk-free rate is a well-known determinant of option prices

(see e.g. the Binomial model or the Black/Scholes model). To have a parsimonious model we

use for the level of the risk-free term structure only the risk-free rate with a maturity of two

years which will be symbolized by rF,2. Based on the unit root tests in Appendix B we will

use the first difference, symbolized by ∆rF,2 = rF,2,t − rF,2,t−1.

Remark 3.1. Note that a risk-free asset, as modeled in Section 2, only exists in theory, as

such an asset is assumed to be risk-free in terms of the consumption good. This assumption
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excludes e.g. inflation risk (see also Cochrane (2005)[p. 111]). Apart from inflation risk, the

spot rates derived here are not completely risk-free, since LIBOR and swap rates include small

but non-zero default risk. Therefore, the spot rates described above are close but not equal to

the risk-free asset considered in the model. Keeping this in mind, we follow existing literature

and call the spot rates rF , described above, the ”risk-free” term structure.

We include the risk-free rate in our regressions for the following reason: Within our model

in Section 2, these spot rates still include some (small) risk and therefore both according to

the affect infusion model and the mood maintenance hypothesis should be influenced by the

weather (see equation (9)). E.g. if the affect infusion model holds, then by equation (6) the

investors put less wealth into the risky (so-called ”risk-free”) asset if the mood deteriorates

due to worse weather. If, by contrast, we suppose that the investors consider these (nearly

risk-free) spot rates to be risk-free, the opposite is true: E.g. if the affect infusion hypothesis

holds, then according to equation (6) the investors put more wealth into the ”risk-free” asset

if the mood deteriorates because of worse weather. Thus, in both cases the weather could have

an impact on the demand for this ”risk-free” asset, affecting the spot interest rates.

Moreover, as a result of the previous two paragraphs we should check for weather effects

with these ”risk-free” spot rates since these rates also drive the other assets’ market prices,

especially they are used to calculated the corporate bonds spreads.

3.2 Corporate Bond Spreads

To get an initial sample of corporate bonds we selected all bonds that were included in the

NASD Bloomberg Active Investment Grade U.S. Corporate Bond Index as of July 19, 2006.

This is a corporate bond index generated solely from the actual transaction prices of actively

traded bonds. It reflects activity for the most frequently traded fixed-coupon investment-grade

bonds. The index membership is comprised of TRACE-eligible fixed-coupon corporate bonds,

excluding all zero coupon bonds, 144As, convertible bonds, and bonds set to mature before

the last day of the month for which index re-balance occurs. All bonds must have traded on
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average at least 3 times per day, with at least one transaction on 80% of the 60 trading days

prior to the re-balance calculation date, and have a total issued amount outstanding available

publicly. Appendix A describes in more detail how the sample was further restricted and how

the transaction prices of these bonds were obtained from the TRACE database. The bond

data collection procedure resulted in N = 179 bonds issued by 23 firms, observed on T = 952

days. Due to missing values and the fact that not all bonds were traded on all days within the

time span considered, the number of observations is smaller than N · T , however more than

80,000 observations are used in our empirical analysis.

From the bond prices we derived for these corporate bonds the yield spreads. sit represents

the spread for bond i at time t, in basis points. Based on the current gross price and the cash

flow structure we derived the yield to maturity of each bond on each day. Then, for a fictitious

risk-free bond with precisely the same cash flows we calculate the price of this fictitious risk-

free bond (using the risk-free discount rates described in Section 3.1) and, based on that, its

yield to maturity. The corporate bond spread is the difference between the two yields. Using

the fictitious risk-free bond with the same cash flow structure we we can eliminate coupon

effects.

3.3 Stock Market Data

For the 23 firms representing the bond sample in Section 3.2 we collected the corresponding

daily stock prices and calculated the daily ex-post stock returns STR (measured in percentage

terms).9 To compare our results to previous studies and to check if weather effects are present

on an aggregated vs. disaggregated level we included the S&P 500 index and computed the

S&P 500 returns (measured in percentage terms), SPRETURNS. In addition, motivated by

the results of Collin-Dufresne et al. (2001) and Pan and Singleton (2008) we control for the

stock market volatility measured by the VIX index. VIX is a volatility index of the Chicago

9If for a firm no stock was traded but there was a close link to a related listed company (especially when
a financing subsidiary or another privately held subsidiary issued the bonds), we used the stock returns of the
related company as a proxy for the returns of the firm analyzed.
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Board Options Exchange that measures the implied volatility of at-the-money put and call

options on the S&P 500. It is also interpreted as ”investor fear gauge” (measuring the fear of

a future increase in stock market volatility; see Whaley (2000)).

3.4 Weather Data

Following much of the Behavioral Finance literature (e.g. Saunders (1993), Trombley (1997),

Hirshleifer and Shumway (2003), Goetzmann and Zhu (2005), Cao and Wei (2005)) we obtain

the weather data for our observation period from the National Climatic Data Center (NCDC,

data available at http : //www.ncdc.noaa.gov/oa/ncdc.html). This database includes hourly

measurements of weather variables of 221 stations throughout the U.S.

As regards the place of measurement of weather, we have to specify the psychological

story behind more closely. Most papers dealing with weather effects on the stock markets

(e.g. Saunders (1993) and Hirshleifer and Shumway (2003)) assume that the weather effects

come from the impact of the weather on the mood of investors. This would require weather

data at the place(s) where the investors are located. In this line Loughran and Schultz (2004),

after observing trading of stocks primarily by shareholders located close to the company’s

headquarters, analyze the impact of the local weather, to which shareholders of a stock are

exposed, on the returns of this stock. However, they find only little evidence for the impact

of local weather on the stock returns. Similarly, Goetzmann and Zhu (2005) investigate the

relationship between sunshine in five major U.S. cities with large population and the trading

activities of people in these cities and find hardly any impact of local weather except for

N.Y. They hypothesize that the reason for this is that the weather effect does not come from

the trading patterns of individual investors but from the attitudes of market makers, news

providers or other agents physically located in the city hosting the exchange. An impact of

the weather via the market makers was also detected by Shon and Zhou (2009).10

10Note that, in contrast to the stock market (New York Stock Exchange), the corporate bond market is an
OTC market where market-making is done by dealers. Schultz (1998) describes the structure of this market
and finds that more than 70% of the trades involve the top 12 dealers (see Table 2 in that paper showing that
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Therefore, we restrict our analysis to the weather in New York. More precisely, we select

the weather station at La Guardia Field airport. Selection of the airport weather in the city

where the stock exchange is located is also consistent with Saunders (1993), Krämer and

Runde (1997), Hirshleifer and Shumway (2003) and Cao and Wei (2005).

We use the following weather variables (all of them collected from the NCDC ”hourly data”

database): Persinger (1975), Cunningham (1979) and Howarth and Hoffman (1984) show, that

sunshine is one of the most important meteorological determinants of mood and Goldstein

(1972) proposes that low cloud cover is linked to positive mood. As a result, cloud cover is the

weather variable most frequently investigated in the Behavioral Finance literature. Much of

the literature (e.g. Saunders (1993), Hirshleifer and Shumway (2003), Chang et al. (2006) and

Yoon and Kang (2009)) shows a negative relation between cloud cover and stock returns. In

line with this our first weather variable is cloud cover, denoted as CLOUDCOV ER. Strong

cloud cover will deteriorate the mood and thus according to the affect infusion model or the

mood maintenance hypothesis will change the risk aversion of the market participants. This

could result in a change in the demand for asset classes of different risk thereby changing the

risk-free rates, the corporate bond spreads, stock prices, stock market indexes and volatility

indexes.

The NCDC Global Integrated Surface Hourly database contains hourly readings of the

Total Sky Cover that is measured by a code that maps the fraction in tenth of the total

celestial dome covered by clouds or other obscuring phenomena to a scale between 0 and 8.

The value of the variable CLOUDCOVER therefore ranges from 0 (none of the sky is covered

by clouds) to 8 (all of the sky is covered by clouds). We proceeded as follows: First, we

eliminated all data where the NCDC quality check code indicated ”suspect” or ”erroneous”.

Then, we computed for each day the daily cloud cover by taking the average of the remaining

data. In analogy to Hirshleifer and Shumway (2003) and Goetzmann and Zhu (2005) we

e.g. Merrill Lynch Capital Markets accounts for about 10% and Morgan Stanley and Co. for close to 7% of
the trades). These dealers are strongly represented in New York. In addition we know from Table 4 in Schultz
(1998) that many important investors on the corporate bond market are also located in New York.
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aggregate only the data measured between 7 a.m. and 5 p.m. This time frame is justified

by the trading hours.11 Use of weather before the beginning of the trading hours assumes an

impact of weather on the mood even before the trading activity (e.g. on the way from home

to business). This methodology is in line with Hirshleifer and Shumway (2003), Loughran and

Schultz (2004) and Cao and Wei (2005).

In addition to cloud cover (and in line with Zadorozhna (2009) and Lu (2009)), we used

the hourly visibility, defined as the horizontal distance at which an object can be seen and

identified, denominated in meters and denoted as V ISIBILITY . We used the same pro-

cedure as described for cloud cover to get a daily value: We eliminated all data where the

NCDC quality check code indicated ”suspect” or ”erroneous” and computed the daily value

by averaging the data between 7 a.m. and 5 p.m.

Motivated by Keef and Roush (2002), Hirshleifer and Shumway (2003), Dowling and Lucey

(2005), Chang et al. (2006), Gerlach (2007) and Chang et al. (2008) we also used hourly

precipitation volume data from 7.00 a.m. to 5.00 p.m. and (after considering the NCDC

quality check) aggregated this data to a daily precipitation in milliliters. We denote this

variable as PRECIPITATION .

Moreover, we used temperature as a weather variable: Cunningham (1979) and Howarth

and Hoffman (1984) showed that temperature is positively related to mood. By contrast,

Griffitt and Veitch (1971) and Goldstein (1972) proposed that low temperature is linked to

positive mood. Moreover, psychological literature (e.g. Baron and Bell (1976) or Baron and

Ransberger (1978), Howarth and Hoffman (1984)) shows an impact of temperature on the

aggressiveness. Consistent with this, plenty of recent Behavioral Finance literature (e.g. Cao

and Wei (2005), Chang et al. (2006), Keef and Roush (2007), Dowling and Lucey (2008),

Shu (2008), Chang et al. (2008), Shu and Hung (2009) and Yoon and Kang (2009)) found

that stock returns were related to the temperature. Many findings imply that low temper-

11An analysis of the transactions in our corporate bond database shows that also on the corporate bond OTC
market most of the trades took place between 9.30 a.m. and 5 p.m.
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ature goes hand in hand with lower risk aversion and high temperature leads to higher risk

aversion. Cao and Wei (2005) however raised an alternative interpretation, namely that very

low temperature could imply aggressive behavior (increasing the risk-taking propensity) and

very high temperatures could cause apathic behavior (reducing the risk-taking propensity).

We used hourly air temperature data in degrees Celsius (after the NCDC quality check) and

aggregated them to daily data. For each day we computed the daily average temperature

from 7.00 a.m. to 5.00 p.m. This variable will be denoted as TEMP (or TEMPDS for the

deseasonalized version, see below).

Our next weather variable is the percentage relative humidity (denoted as HUMIDITY ).

Goldstein (1972), Persinger (1975), Sanders and Brizzolara (1982) and Howarth and Hoffman

(1984) showed that humidity is an important meteorological determinant of mood. Conse-

quently, Keef and Roush (2002), Keef and Roush (2005), Dowling and Lucey (2005), Shu

(2008) and Yoon and Kang (2009) use humidity as a determinant of security prices. As with

the other weather variables, we used hourly data and (after considering the NCDC quality

code) for each day calculated the mean over the times from 7 a.m. and 5 p.m.

Psychological studies (e.g. Goldstein (1972), Keller et al. (2005)) found that high baromet-

ric pressure was linked to positive mood. Moreover, Shu (2008) showed, that high barometric

pressure is associated with high stock returns. Therefore, we also included barometric pres-

sure into our analysis. We used the station pressure in Hectopascals from the NCDC hourly

database and (after the NCDC quality check) for each day used the mean of the measurements

between 7.00 a.m. and 5.00 p.m. We denoted this variable as BAROPRESS.

Troros et al. (2005) and Denissen et al. (2008) found that wind deteriorates the mood. In

line with this, Keef and Roush (2005) and Shu and Hung (2009) found an impact of wind on

security prices. Thus, we also integrated the windspeed as a weather variable. We used the

hourly measurements of the windspeed in meters per second from the NCDC hourly database

and (after the NCDC quality check) for each day calculated the mean of the measurements

between 7.00 a.m. and 5.00 p.m. We denoted this variable as WINDSPEED.
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After we had procured the weather data, we had to deal with deseasonalization of the

weather time series, as frequently done in the Behavioral Finance literature to capture the

”unexpected” component of that day’s weather. In this context, we investigated if at all and

which variables should be deseasonalized and how desaisonalization should be performed. A

detailed analysis can be found in Appendix C. The most important results can be summarized

as follows:

First, we compare the methodology usually used in the Behavioral Finance literature to

trigonometric polynomials, often applied in Econometrics to filter out the cyclical components

of a time series. Regarding the fit we observe only minor differences between the two method-

ologies. Second, we test econometrically which weather variables should be deseasonalized.

By means of the residuals arising with non-deseasonalized and deseasonalized weather data,

we are able to run an F-test to check whether deseasonalization is required at all for the time

series considered (see equation (17) in Appendix C). By this, we find out that only for the

temperature variable deseasonalization is necessary. Third, we also investigate the impact on

inference of deseasonalization if no seasonal component exists as well as the impact on infer-

ence of a lack of deseasonalization if a seasonal component exists in the data. We observe that

if the data are not deseasonalized but the seasonal component is sufficiently strong, we get

a substantial bias. If data without any seasonal component are deseasonalized, no problems

with respect to inference are observed. By this, we justify ex-post the technique, used in a lot

of Behavioral Finance papers, to deseasonalize each weather variable. Also, our results show

that it is very unlikely that in existing studies that showed an impact of weather on stock

markets it was deseasonalization that has produced spurious weather effects.

Thus, for the rest of the paper only the temperature will be used in its deseasonalized

form. Concerning the deseasonalization method we stick to the method used in the Behav-

ioral Finance literature (Hirshleifer and Shumway (2003), Loughran and Schultz (2004) or

Goetzmann and Zhu (2005)): First, we computed the average temperature of each calender

week as the average of the temperatures of all days during this calender week. We then com-
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pute the ”usual” temperature for each calender week of the year (week 1, week 2,. . . , week

52) as average of the four/five observations for that particular week of the year during our

4 2/3 year sample. Finally, we compute the daily seasonally-adjusted temperature value as

the excess temperature of a particular day over the usual average temperature of the calender

week to which it belongs.

Some descriptive statistics on the weather data are provided in Table 1. The null of

Gaussian data is rejected for all weather time series when using the Jarque-Bera test. When

looking at the autocorrelations we observe that for most weather variables the autocorrelation

decays strongly such that the correlation of the current weather with the weather lagged by 2-5

five days is not very strong.12 Additionally, Table 1 presents the cross-correlation coefficients

of the weather variables used with the corresponding p-values. Based on this table, multi-

collinearity in the regressions yet to come, due to correlation in the weather variables, does

not seem to be a problem.

TABLE 1 ABOUT HERE

3.5 Control Variables

This subsection includes several control variables taken from literature:

Credit risk: It goes without saying that e.g. the corporate bond spreads must depend

on the credit risk of the bond. We use one very popular measure of credit risk, namely the

rating. In our corporate bond spread regressions we use a credit risk proxy commonly applied

in the fixed income literature and in industry (see Collin-Dufresne et al. (2001) or Berndt et al.

(2008)), namely the distance to default, DD. We implemented the distance to default following

the iterative procedure outlined by Crosbie and Bohn (2003). As this procedure requires

12When looking at the p-values arising from the Box-Ljung test the null of no serial correlation is rejected.
Using the Barlett bounds (given by 1√

T
) to check whether the individual autocorrelation coefficient is still

significant, we observe that for some whether variables |ACFj | becomes close to 1√
T

= 0.0324 for j > 1;

(for more details see Brockwell and Davis (2006)). As observed later in Section 4.2, this decay in the serial
correlation makes it difficult to instrument actual weather variables by means of higher order lagged weather
variables.
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CLOUD V ISI PRECI TEMPDS HUMI BARO WIND
COV ER BILITY PITATION DITY PRESS SPEED

Obs. 950 952 952 952 952 942 952
Mean 5.1258 14453.9300 1.7824 0.0460 67.5060 1015.9560 4.6490
Median 5.6923 16008.4500 0.0000 -0.0108 66.2967 1016.4720 4.2458
max 8.0000 16076.0900 124.0000 15.4803 100.0000 1040.7230 14.2667
min 0.0000 960.0000 0.0000 -11.8265 24.2727 984.1174 0.8308
sd 2.5159 3043.2840 8.0319 3.9002 15.7699 7.7593 2.1325
Skewness -0.4528 -2.1647 8.5324 0.1809 0.0908 -0.4538 0.8838
Kurtosis 1.8727 7.0443 98.5574 3.7225 2.1496 3.8935 3.7221

Jarque-Bera test on Gaussian distribution
JB-stat. 82.7664 1392.3170 3.73e5 25.9001 29.9954 63.6676 144.6213
p-values < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

First to fifth order autocorrelation coefficients ACFj
ACF1 0.1970 0.1090 0.0740 0.4700 0.3550 0.4310 0.2500
ACF2 0.0580 -0.0140 0.0940 0.2100 0.1560 0.1140 0.0850
ACF3 0.0300 -0.0020 -0.0080 0.1590 0.1470 0.0450 0.1300
ACF4 0.0510 -0.0120 -0.0270 0.1900 0.1370 0.0850 0.1600
ACF5 -0.0310 -0.0010 -0.0120 0.1220 0.1160 0.0560 0.1310

Correlation matrix with p-values
CLOUD. 1.0000

−
V ISIB. -0.2364 1.0000
p-values < 0.001 −
PRECI. 0.2402 -0.1271 1.0000
p-values < 0.001 0.0001 −
TEMPDS 0.1529 -0.0926 0.0603 1.0000
p-values < 0.001 0.0045 0.0646 −
HUMID. 0.5811 -0.3899 0.3184 0.1678 1.0000
p-values < 0.001 < 0.001 < 0.001 < 0.001 −
BAROP. -0.2204 0.2345 -0.1072 -0.2662 -0.2053 1.0000
p-values < 0.001 < 0.001 0.0010 < 0.001 < 0.001 −
WINDS. 0.0492 -0.0894 0.1930 -0.1969 -0.1106 -0.2502 1.0000
p-values 0.1314 0.0061 < 0.001 < 0.001 0.0007 < 0.001 −

TABLE 1. Descriptive Statistics and Correlations for the weather data. Obs. stands for number of observations,

JB-stat. for Jarque-Bera statistic. sd stands for the standard deviation.
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accounting data (volume of short-term debt and volume of long-term debt), we extracted for

each issuer quarterly financial statements from the COMPUSTAT database. In addition, the

stock prices described in Section 3.3 are required. If for a bond issuer no financial statements

data were available but there was a close link to a related listed company, we used the financial

statements data of the related company as a proxy for the company investigated. Thus, in

these cases we extracted both the stock price and the financial statements for the related

company. Based on the market capitalization and the book value of debt we also derive the

debt to value ratio DV R (see e.g. Ericsson et al. (2009)).

Liquidity: Longstaff et al. (2005) show that the non-default component in corporate bond

spreads is strongly related to liquidity. Therefore, in our corporate bond spread regressions

we used a proxy for liquidity as a potential determinant. Following Amihud and Mendelson

(1991) we use the time to maturity of the respective bond on the specific day, denoted as

TM . Moreover, as a robustness check we also used daily trading volume, V OLUME, and the

difference between the highest and the smallest price traded on that day, RANGE.

Weekday Seasonalities: We also used a Monday dummy (MONDAY ) that has the value

of 1 on Mondays and 0 else. We include weekday seasonalities for two reasons: First, there

is literature showing weekday seasonalities in several financial market segments: E.g. e.g.

French (1980) and Keim and Stambaugh (1984) detect weekday effects in the stock markets.

Other articles (e.g. Flannery and Protopapadakis (1988), Johnston et al. (1991)) find, that

weekday effects also occur in the fixed income/corporate bond segment. Second, including

weekday effects is usual in the literature that investigates if the weather has an impact on

stock returns (e.g. Saunders (1993), Trombley (1997), Goetzmann and Zhu (2005), Chang

et al. (2008)).

Fama-French Factors: Since empirical asset pricing literature favors multi-factor models,

we downloaded data for the small-minus-big market capitalization factor, SMB, and the

high-minus-low book-to-market ratio factor, HML, from Kenneth French’s web page (http :

//mba.tuck.dartmouth.edu/pages/faculty/ken.french). These two variables will be used as
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factors when analyzing the individual stock returns.

Autoregressive Term: We also include the lagged value of the respective financial market

variable. This is in line with Saunders (1993) who did this for stock index returns. Also, it is

consistent with bond pricing literature (e.g. Duffee (1998), Duffie et al. (2003), etc.) showing a

strong persistence of corporate bond spreads or their components. Moreover, we shall observe

that regression residuals are serially correlated if an autoregressive term is not included. If

this is the case the variance covariance matrix of the regressors is not consistently estimated

which implies that the inference about the parameters becomes incorrect. In order to get rid

of this problem, we estimate a dynamic regression model with a lagged dependent variable

(see e.g. Davidson and MacKinnon (1993)[Chapters 10 and 19.4]).

4 Methodology and Results

We investigate the effect of the weather on financial market variables performing the following

panel regression analysis:

yit = αi + βwwt + βccit + εit . (12)

Equation (12) models the variable yit as a linear function of the weather variables wt and

the control variables cit. yit stands for one of the dependent variables studied (rF , corporate

bond spreads, S&P 500 returns, individual stock returns, VIX). We observe i = 1, . . . , N cross

sections, while in the time-series dimension we observe t = 1, . . . , T periods. wt represents a

vector containing the weather variables (to be more precise: cloud cover, visibility, deseason-

alised temperature, precipitation amount, humidity, wind speed and barometric pressure at

time t and the lagged weather variables for the regressions of ex-post returns) and cit repre-

sents a vector containing the control variables on day t (e.g. the first differences of the level

of the risk-free term structure, S&P 500 returns, . . . , the lagged yit). εit is the error term.

From equation (12) it is clear that we assume a linear impact of the control and the weather
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variables on yit. In addition, we implicitly assume that the explanatory variable affects all yit

in the same linear way.

αi can be treated as a deterministic parameter (fixed effects model), a random variable

(random effects model) or equal for all assets i (pooled model). For more precise definitions and

model assumptions we refer the reader to related literature, such as Ruud (2000), Wooldridge

(2001), Hsiao (2003) and Baltagi (2008). While for the pooled or the random effects model

parameters for variables constant over t can be estimated, with the fixed effects specification

these impacts are included in the parameters αi. Note that the pooled setting puts a lot of

structure on the intercept that may not be justified by the data. E.g. with corporate bonds the

literature (e.g. Collin-Dufresne et al. (2001) or Driessen (2005)) suggests that bond-specific

effects are included in the spreads. Such bond-specific effects may be caused e.g. by the term

structure of credit risk. This would be an argument against pooled least squares estimation

and in favor of fixed or random effects.

We tested these different specifications against each other. First, we tested a pooled model

against the alternative of a fixed effects model. We did this by testing the joint null hypothesis

that all coefficients of these regressors αi are zero (pooled model) versus the alternative that

at least one of them is non-zero (fixed effects model) by means of a standard likelihood ratio

test (see e.g. Bickel and Doksum (2001), Wooldridge (2001)). For our data, the p-value is

very close to zero, such that the null hypothesis of a pooled model has to be rejected. The

fixed effects model dominates the pooled model for all panel settings considered in this article.

In a second step to decide between the random effects and the fixed effects model, we

perform a Hausman test (see the textbooks cited above). Although the Hausman test assumes

homogeneity in the residuals, a p-value for the Hausman test statistic very close to zero is

a convincing argument, that a fixed effects model should be preferred over a random effects

model. With all panels analyzed (i.e. risk-free term structure, corporate bond spreads and

firm-by-firm stock returns) these tests favor the fixed effects model.

The results of these tests remain the same for the specifications estimated in Section 4.1 and
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Section 4.2, respectively. Based on these tests we work with a fixed effects model. Therefore,

only the results for the fixed effects regressions will be presented in the following.

Remark 4.1. Variables which remain constant in the time series dimension cannot be used in

a standard fixed effects setting. In our data set the rating dummies exhibit very little variation

over time. This implies that rating dummies cannot be used in our fixed effects regression –

there is an insufficient degree of time series variation with this explanatory variable. Possible

effects arising from the rating are included in the intercept terms αi.

4.1 Baseline Fixed Effects Regressions

To check for weather effects we proceed in the following way:

1. First we check whether there are weather effects in the market variables such as the

risk-free interest rate, the S&P 500 index and the VIX volatility index.

2. Since these market variables are used as regressors on the disaggregated level (corporate

bond spreads and individual stock returns), the results or the interpretation of the results

on the disaggregated level depend on the results for the market variables. If there are

any weather effects on the market variables, any weather effects with the (firm-by-firm

and bond-by-bond) disaggregated analysis have to be interpreted as additional weather

effects. If no weather effects can be detected on the aggregate level, the regressions on

the disaggregate level test for the existence of weather effects on the disaggregated level.

This dependence in the interpretation is one of the reasons why we study the impact of weather

on a multitude of financial sub-markets.

In a first step we estimate the fixed effects models by means of least squares. Columns

two to four of Tables 2 - 6 present the results. The estimates of αi and the fixed effects are

not reported in these tables. The aggregated financial market data is investigated in Tables 2

- 4, then Tables 5 and 6 present the results on the disaggregated level.

29



Equation (12) is used to find the determinants of the risk-free rates, the corporate bond

spreads, the S&P returns and the VIX. For the individual stock returns the regression coef-

ficient for the S&P 500 returns is estimated on a firm-by-firm basis to include the fact that

different firms bear different systematic risk. Therefore, the model

STRit = αi + βwwt + βccit + βci(SPRETURNSt, SMBt, HMLt) + εit , (13)

is estimated. The first element of βci corresponds to the estimate of the beta factor in a Black-

style implementation of the CAPM (that assumes that no risk-free interest rate is available;

for more details see Campbell et al. (1996)[Chapter 6]). The second and the third are the

factor loadings for the Fama-French factors. Thus, equation (13) is a standard econometric

implementation of an asset pricing model with weather variables included. The fixed effects

αi and the component-specific effects βci are not reported in Table 6. Although not reported,

these βci are highly significant for the S&P 500 returns as can be expected by prior applications

of the CAPM. For the Fama-French factors significant parameters have been observed for most

firms. The increase in the coefficient of determination R2 when switching from a model with

the S&P 500 returns to a model with these returns and the two remaining Fama-French factors

is relatively low (approximately one percentage point). In addition to the market factors we

check for a dependence on the interest rate rF,2 and on the market volatility represented by

the V IX index.

By applying the ”default” significance level of 5%, the p-values in the fourth column suggest

the following: (i) For the risk-free term structure precipitation, temperature, wind-speed and

the barometric pressure have a significant impact on the changes in the risk-free interest rates

rF . Visibility would by significant, as well, when applying a 10% significance level. (ii) For

the S&P 500 returns no significant weather effects are observed. (iii) The weather variables

show no significant impact on the VIX index. (iv) The deseasonalized temperature affects the

corporate bond spreads, precipitation is close to the 10% border. (v) The individual stock

30



returns are influenced by the barometric pressure and lagged visibility. For the lagged cloud

cover we observe a p-value of 8%. We get close to 10% significance with the lagged cloud cover

and the lagged precipitation amount. Without having a closer look on the residuals or without

being concerned whether the least squares assumptions are fulfilled one might conclude that

some weather variables significantly influence asset prices. Further investigations will take

more care on these issues.

In a next step we analyze the residuals from these regressions: First of all, even by a

visual inspection we observe a high degree of heterogeneity within the residuals (heterogeneity

over time - which is plausible given the extensive literature on GARCH effects and stochastic

volatility) as well as between the residuals of different assets. E.g. we observe that for most

rates/spreads/returns the mean squared residuals differ by at least one standard deviation from

the mean squared residual of the whole sample of all the rates/spreads/returns considered.

To get a clearer picture, we estimated a fixed effects model, where the squared residuals are

used as response variable, while only the αi parameters are used as predictors. By checking

whether in such a model a fixed effects specification is preferred to a pooled specification, we

test for heteroscedasticity.13 The null hypothesis of this test implies that the squared residuals

are the same across all the rates/spreads/returns considered. The p-value of this test, is very

close to zero. Therefore, we conclude that substantial heteroscedasticity exists in the residuals

for all the data considered above. Inference based on ordinary least squares standard errors

is problematic. Robust standard errors should be used instead.

Thus, we present the White (1980) standard errors and the corresponding p-values in the last

two columns of Tables 2-6. Also Loughran and Schultz (2004) and Dowling and Lucey (2005)

applied this method in their analysis of the impact of the weather on stock returns. Note

that, by this approach, the regression parameters remain the same, but the covariance matrix

of the parameters is calculated in a different way. For the rest of the paper we stick to White

13Note, that this regression is a test on heterogeneity in the residuals (heteroscedasticity) and should not be
confused with the models estimated in the above tables.
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(1980) standard errors and use the p-values based on these standard errors. Looking at the

last column we immediately observe that no weather variable has a significant impact on the

risk-free interest rates and the VIX index. For the S&P 500 returns the lagged barometric

pressure is significant, the actual barometric pressure is significant at an 8% level. Also, for

the bond spreads we cannot detect any weather effects. For the individual stock returns no

weather variables show up with a p-value smaller than 5%, but the lagged visibility has a

p-values smaller than 10%. Therefore, we conclude that when sticking to the least squares

estimates but adjusting for heterogeneity in the residuals almost all weather effects which have

been ”detected” with least squares estimates and least squares standard errors are swept away.

Although the next section will argue that the least squares estimators may cause problems,

we see that even with least squares almost all weather effects disappear when taking care of

the heterogeneity in the residuals.

TABLES 2-6 ABOUT HERE

Variable βi SE(βi) p-value SEW (βi) p-value

CLOUDCOV ER 9.9E-7 2.6E-6 0.7000 6.6E-6 0.8805
V ISIBILITY 3.3E-9 1.9E-9 0.0822 5.2E-9 0.5276
PRECIPITATION 5.3E-6 1.5E-6 0.0003 3.5E-6 0.1348
TEMPDS -1.6E-6 7.3E-7 0.0286 1.5E-6 0.2838
HUMIDITY -4.0E-7 7.6E-7 0.5958 2.0E-6 0.8387
BAROPRESS 1.4E-6 4.6E-7 0.0017 1.2E-6 0.2237
WINDSPEED 6.1E-6 2.8E-6 0.0270 7.5E-6 0.4181
MONDAY 2.4E-5 1.4E-5 0.0792 3.2E-5 0.4507
V IX -4.5E-6 7.0E-7 < 0.001 1.9E-6 0.0190
SPRETURNS 7.2E-5 4.9E-6 < 0.001 1.7E-5 < 0.001
∆rF,t−1 7.4E-3 9.9E-3 0.4592 0.0323 0.8196

R2=0.0325

TABLE 2. ”risk-free” interest rates ∆rF as decimal, Least Squares Estimates, fixed effects model (N = 11

maturities, T = 952; 9,625 observations, intercept and fixed effects not reported), SE is the standard error based

on least squares. The fourth column presents the p-values obtained from the estimate of βi and its corresponding

standard errors. SEW is the White (1980) adjusted standard error with the corresponding p-value in the last

column.
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Variable βi SE(βi) p-value SEW (βi) p-value

CLOUDCOV ER -0.0057 0.0111 0.6092 0.0101 0.5739
V ISIBILITY 5.9E-6 8.2E-6 0.4708 8.4E-6 0.4829
PRECIPITATION 0.0055 0.0037 0.1379 0.0042 0.1921
TEMPDS 0.0042 0.0078 0.5940 0.0086 0.6283
HUMIDITY 0.0016 0.0021 0.4411 0.0021 0.4396
BAROPRESS -0.0013 0.0040 0.7449 0.0039 0.7442
WINDSPEED -0.0075 0.0124 0.5449 0.0123 0.5417
CLOUDCOV ERt−1 0.0081 0.0112 0.4733 0.0124 0.5171
V ISIBILITYt−1 -4.1E-6 8.0E-6 0.6096 8.1E-6 0.6142
PRECIPITATIONt−1 0.0003 0.0031 0.9202 0.0024 0.8961
TEMPDS,t−1 -0.0038 0.0076 0.6136 0.0081 0.6362
HUMIDITYt−1 -0.0014 0.0021 0.4936 0.0023 0.5429
BAROPRESSt−1 -0.0023 0.0042 0.5783 0.0040 0.5658
WINDSPEEDt−1 0.0004 0.0123 0.9750 0.0130 0.9763
MONDAY 0.4081 0.0585 < 0.001 0.0623 < 0.001
V IX -0.7957 0.0211 < 0.001 0.0289 < 0.001
∆rF,2 -0.7706 0.9570 0.4209 0.9170 0.4009
V IXt−1 0.7900 0.0211 < 0.001 0.0297 < 0.001
∆rF,2,t−1 -0.0871 0.9883 0.9298 0.7415 0.9066
SPRETURNSt−1 -0.0124 0.0210 0.5544 0.0279 0.6566

R2=0.6341

TABLE 3. S&P 500, Least Squares Estimates (T = 952 observations, intercept not reported), SE is the

standard error based on least squares. The fourth column presents the p-values obtained from the estimate of βi

and its corresponding standard errors. SEW is the White (1980) adjusted standard error with the corresponding

p-value in the last column.
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Variable βi SE(βi) p-value SEW (βi) p-value

CLOUDCOV ER -0.0174 0.0106 0.1004 0.0108 0.1095
V ISIBILITY 1.9E-7 7.8E-6 0.9810 7.4E-6 0.9801
PRECIPITATION 0.0009 0.0060 0.8820 0.0060 0.8828
TEMPDS 0.0018 0.0030 0.5468 0.0024 0.4579
HUMIDITY -0.0017 0.0031 0.5799 0.0028 0.5445
BAROPRESS 0.0021 0.0019 0.2721 0.0018 0.2522
WINDSPEED -0.0012 0.0113 0.9161 0.0109 0.9134
MONDAY 0.4888 0.0556 < 0.001 0.0575 < 0.001
V IXt−1 0.9906 0.0029 < 0.001 0.0041 < 0.001
SPRETURNS -0.2388 0.3691 0.5177 0.4215 0.5712
∆rF,2 -0.7870 0.0207 < 0.001 0.0342 < 0.001

R2=0.9930

TABLE 4. VIX, Least Squares Estimates (T = 952 observations, intercept not reported), SE is the standard

error based on least squares. The fourth column presents the p-values obtained from the estimate of βi and

its corresponding standard errors. SEW is the White (1980) adjusted standard error with the corresponding

p-value in the last column.

4.2 Instrumental Variable Estimation

An issue that has already been raised in Section 1 and at the end of Section 2, is the functional

chain argument that weather affects asset prices via mood. That is to say, weather does not

directly cause changes in the asset prices but it influences the mood which affect the asset

price. In terms of econometrics such a problem can be investigated in several ways. Here we

follow the idea that the weather variables are a proxy for the unobserved mood variables. In

terms of econometrics this results in an errors in variables problem. Consider the mood µt,

and assume that

yit = αi + βµµt + βccit + εit and wt = µt + ut (14)

where εit and ut are independent. In this case the least squares estimates in Section 4.1

are biased and inconsistent.14 In addition to the basic instrumental variable assumptions we

14For more details on errors in variables see Appendix D. In addition, it is well known that with missing
variables the least squares estimator becomes inconsistent, as well. We tried to avoid this problem by including
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Variable βi SE(βi) p-value SEW (βi) p-value

CLOUDCOV ER 0.0025 0.0154 0.8685 0.0462 0.9561
V ISIBILITY 9.9E-6 1.1E-5 0.3732 3.2E-5 0.7588
PRECIPITATION 0.0132 0.0085 0.1191 0.0235 0.5741
TEMPDS -0.0099 0.0041 0.0165 0.0146 0.4974
HUMIDITY -0.0058 0.0044 0.1904 0.0128 0.6513
BAROPRESS 0.0013 0.0028 0.6433 0.0089 0.8844
WINDSPEED 0.0161 0.0161 0.3170 0.0509 0.7525
MONDAY 0.7423 0.0813 < 0.001 0.2436 0.0023
DV R 0.2451 0.0130 < 0.001 0.0380 < 0.001
∆DD -0.7902 0.7121 0.2671 1.2412 0.5244
V IX 2.9310 0.2833 < 0.001 0.4237 < 0.001
TM 2.3496 0.1577 < 0.001 0.4574 < 0.001
∆rF,2 1.1820 0.0993 < 0.001 0.2917 < 0.001
SPRETURNS 0.4073 0.0434 < 0.001 0.1215 < 0.001
si,t−1 0.8017 0.0021 < 0.001 0.0071 < 0.001

R2=0.9058

TABLE 5. Corporate bond yield spreads sit in basis points, Least Squares Estimates, fixed effects model (N =

179 bonds, T = 952; 80,801 observations, intercept and fixed effects not reported), SE is the standard error based

on least squares. The fourth column presents the p-values obtained from the estimate of βi and its corresponding

standard errors. SEW is the White (1980) adjusted standard error with the corresponding p-value in the last

column.
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Variable βi SE(βi) p-value SEW (βi) p-value

CLOUDCOV ER -0.0015 0.0051 0.7683 0.0064 0.8138
V ISIBILITY -1.8E-7 3.8E-6 0.9613 5.3E-6 0.9722
PRECIPITATION 0.0015 0.0017 0.3729 0.0017 0.3865
TEMPDS 0.0032 0.0036 0.3769 0.0044 0.4733
HUMIDITY -0.0004 0.0010 0.6901 0.0014 0.7734
BAROPRESS 0.0034 0.0018 0.0591 0.0023 0.1398
WINDSPEED -0.0010 0.0057 0.8560 0.0081 0.8979
CLOUDCOV ERt−1 0.0083 0.0052 0.1092 0.0070 0.2398
V ISIBILITYt−1 7.9E-6 3.7E-6 0.0333 4.5E-6 0.0837
PRECIPITATIONt−1 0.0022 0.0014 0.1283 0.0019 0.2452
TEMPDS,t−1 -0.0025 0.0035 0.4784 0.0044 0.5687
HUMIDITYt−1 -0.0013 0.0009 0.1771 0.0013 0.3264
BAROPRESSt−1 -0.0017 0.0019 0.3855 0.0025 0.5003
WINDSPEEDt−1 0.0055 0.0057 0.3303 0.0069 0.4270
MONDAY 0.0115 0.0277 0.6771 0.0353 0.7440
V IX 0.0098 0.0159 0.5366 0.0256 0.7018
∆rF,2 -0.6513 0.1755 0.0002 0.2846 0.0221
V IXt−1 -0.0071 0.0158 0.6538 0.0251 0.7777
∆rF,2,t−1 -0.3551 0.1735 0.0407 0.2415 0.1416
STRt−1 0.0060 0.0056 0.2841 0.0112 0.5909

R2=0.4105

TABLE 6. Stock returns STR, Least Squares Estimates, fixed effects model (N = 23 stocks, T = 952; 19,928

observations; intercept, fixed effects and component-specific effects (βci) of SPRETURNS not reported), SE

is the standard error based on least squares. The fourth column presents the p-values obtained from the esti-

mate of βi and its corresponding standard errors. SEW is the White (1980) adjusted standard error with the

corresponding p-value in the last column.
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assume that E(µt) = 0 and E(µ3t ) 6= 0. While the second assumption is purely technical, the

first assumption simply normalizes the mood variable to a certain level such that the impact

βµµt is zero in the mean. For more details we refer the reader to Econometrics textbooks, such

as Davidson and MacKinnon (1993), Ruud (2000), Wooldridge (2001) or Baltagi (2008). For

a discussion and examples in Finance literature we refer the reader to Roberts and Whited

(2011). Therefore, we proceed with an instrumental variable estimation. The instruments will

be abbreviated by zt.
15

Unfortunately instrumental variable estimation is not as easy as applying least squares

since ”good instruments” are necessary. The drawback with instrumental variable estimation

is associated with weak instruments resulting in large standard errors. This becomes a problem

when performing inference (see e.g. the above textbooks and the discussion in Angrist and

Pischke (2009)[Chapter 4]). We use lagged weather variables as instruments. Since the naive

forecast ”the weather today is the weather tomorrow” does not perform so bad (see the

first order serial correlations in Table 1), the lagged weather variables provide us with good

instruments. According to the lag structure we apply Hansen’s J-test (see textbooks cited

above) to check if weather variables of lag j are still valid instruments. Here we find out

that the just identified model should be used according to this test. That is to say, for the

ex-ante variables where only the actual weather has to be instrumented, only the lag one

weather variables should be used. For the models where the current and the lagged weather

have to be instrumented (S&P 500 and STR), the two and three day lagged weather variables

did not provide us with good instruments. We also observed that two lags for the weather

are not sufficiently informative; that is to say wt−3 is not a good instrument (this is in line

the control variables. Instrumental variable estimation performed in this section is an additional tool to solve
the omitted variables problem.

15 Another possible problem may come from the fact that prices on different financial sub-markets, such
as risk-free bonds, stocks and corporate bonds, need not be independent of each other. Given the general
equilibrium setting of Section 2 all asset prices are determined jointly. However, the CAPM allows us to
express this joint dependence by means of one market factor. Deviations of the returns from the market return
should be idiosyncratic if this model is correct. The weather variables are exogenous. Based on the assumption
that the CAPM holds, we can still assume that εit in (12) is orthogonal to the regressors. When working with
a multi-factor empirical asset pricing model the same arguments still hold.

37



with our observations in Table 1 where a sharp decay of the serial correlation of most weather

variables is observed; an standard test on significance are the Barlett bounds already discussed

in footnote 12). By the assumption that the mood is normalized to zero we can show that ut

is orthogonal to w̃2
t , where w̃t = wt − ( 1

T

∑T
t=1wt) and w̃2

t =
(
w̃2
1t, . . . , w̃

2
kt

)>
when k weather

variables are used. This provides us with further instruments.

We estimate equation (12) for the risk-free term structure, the VIX index and the corporate

bond spreads by means of Two-Stage Least Squares (2SLS). The instruments zt used are all

lagged weather variables and the controls from Section 4.1. The results are presented in

Tables 7, 9 and 10. All p-values are based on White (1980) standard errors. Once again, the

fixed effects setting dominates the random effects as well as the pooled model, and no weather

effects can be detected.

The S&P 500 and the individual stock returns are ex-post returns, such that also the

lagged explanatory variables have to be used as predictors. As already stated in the above

paragraphs it was more difficult to find good instruments for these two regressions. For the

S&P 500 the squared demeaned weather variables (actual and lag one) w̃2
t and w̃2

t−1 have

been used as instruments; here we observed smaller standard errors compared to a model

with instruments wt−2 and wt−3. For the individual stock returns, STR, where model (13)

is estimated, the most efficient estimates have been obtained with the instruments wt−2 and

w̃2
t−1. The results are presented in Tables 8 and 11. For neither the S&P 500 nor the individual

stock returns any weather effects can be detected. Although not presented in the table, for

the individual stock returns especially the S&P 500 market factor was significant.

TABLES 7-11 ABOUT HERE

4.3 Robustness Checks

In this section we want to add a few robustness checks. We start with some robustness checks

for the corporate bond regressions. First, we want to differentiate between the data according

to credit risk with the hypothesis in mind that a split of the sample could show that there
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Variable βi SEW (βi) p-value

CLOUDCOV ER -2.7E-5 4.5E-5 0.5579
V ISIBILITY -9.1E-9 3.4E-8 0.7917
PRECIPITATION 9.1E-6 6.8E-6 0.1839
TEMPDS -8.6E-6 2.1E-5 0.6797
HUMIDITY -7.7E-7 4.8E-6 0.8724
BAROPRESS 5.7E-6 6.5E-6 0.3781
WINDSPEED 1.3E-5 4.0E-5 0.7379
MONDAY 2.7E-5 3.7E-5 0.4638
V IX -5.1E-6 2.4E-6 0.0335
SPRETURNS 0.0001 1.9E-5 < 0.001
∆rF,t−1 0.0077 0.0340 0.8200

TABLE 7. ”risk-free” interest rates ∆rF as a decimal, 2SLS Estimates, fixed effects model (N = 11 maturities,

T = 952; 9,625 observations, intercept and fixed effects not reported). SEW is the White (1980) adjusted

standard error with the corresponding p-value in the last column.

are weather effects of different significance for bonds with different credit risk. If there is

an impact of the bond’s credit risk on the strength of the weather effects, it may be the

aggregation of the sample that could have generated the non-existence of weather effects in

our study. The hypothesis could be that AAA bonds are less risky than bonds with an inferior

rating. From the model presented in Section 2 we know that mood and weather should have

a smaller impact with less risky assets. The opposite is true for bonds with higher credit risk

(e.g. BBB bonds). An analysis like this is also consistent with Baker and Wurgler (2006)

showing that investors’ sentiment has a stronger impact on the pricing of stocks that exhibit

higher risk. The hypothesis is also in line with Forgas (1995), Conlisk (1996) and Slovic

et al. (2000) showing that the impact of irrationality is increasing with the complexity of

the decision-making situation. Hence we constructed the regressors ”weather variable×1AAA”

and ”weather variable×1BBB” (i.e. we included fourteen additional prediction variables; these

variables can be considered as exogenous). 1AAA (1BBB) is an indicator variable which for

time t and bond i has a value of one if the bond i has the rating AAA (BBB) on day t,

otherwise the value is zero. Estimating the model by two stage least squares again shows no
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Variable βi SEW (βi) p-value

CLOUDCOV ER -0.0064 0.0202 0.7498
V ISIBILITY 1.9E-5 1.7E-5 0.2609
PRECIPITATION 0.0081 0.0061 0.1864
TEMPDS -0.1027 0.0760 0.1769
HUMIDITY -0.0007 0.0041 0.8651
BAROPRESS -0.0162 0.0162 0.3182
WINDSPEED -0.0496 0.0447 0.2676
CLOUDCOV ERt−1 -0.0163 0.0271 0.5477
V ISIBILITYt−1 -7.5E-6 1.8E-5 0.6756
PRECIPITATIONt−1 0.0039 0.0036 0.2821
TEMPDS,t−1 0.0333 0.0372 0.3707
HUMIDITYt−1 0.0018 0.0040 0.6518
BAROPRESSt−1 0.0101 0.0144 0.4847
WINDSPEEDt−1 -0.0120 0.0270 0.6553
MONDAY 0.3298 0.1108 0.0030
V IX -0.8186 0.0526 < 0.001
∆rF,2 31.3140 21.7488 0.1503
V IXt−1 0.8085 0.0507 < 0.001
∆rF,2,t−1 -25.6663 22.4776 0.2538
SPRETURNSt−1 -0.0265 0.0536 0.6205

TABLE 8. S&P 500, 2SLS Estimates (T = 952 observations, intercept not reported). SEW is the White (1980)

adjusted standard error with the corresponding p-value in the last column.

Variable βi SEW (βi) p-value

CLOUDCOV ER 0.1220 0.1612 0.4493
V ISIBILITY -0.0001 0.0002 0.3994
PRECIPITATION -0.0145 0.0121 0.2303
TEMPDS -0.0294 0.0303 0.3322
HUMIDITY -0.0040 0.0162 0.8041
BAROPRESS -0.0274 0.0524 0.6012
WINDSPEED -0.1369 0.1579 0.3860
MONDAY 0.4375 0.0930 < 0.001
V IXt−1 0.9941 0.0065 < 0.001
SPRETURNS -0.7828 0.0431 < 0.001
∆rF,2 -0.4345 0.6368 0.4952

TABLE 9. VIX, 2SLS Estimates (T=952 observations, intercept not reported). SEW is the White (1980)

adjusted standard error with the corresponding p-value in the last column.
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Variable βi SEW (βi) p-value

CLOUDCOV ER 1.7283 3.5928 0.6305
V ISIBILITY -0.0026 0.0051 0.6136
PRECIPITATION -0.0400 0.2075 0.8472
TEMPDS -0.4366 0.9708 0.6529
HUMIDITY -0.0742 0.1990 0.7094
BAROPRESS -0.4907 0.9311 0.5982
WINDSPEED -2.7227 5.2179 0.6018
MONDAY -0.6985 2.9237 0.8112
DV R 0.5747 0.7003 0.4119
∆DD -1.1077 3.0248 0.7142
V IX 2.7818 1.2142 0.0220
TM -1.9718 9.0161 0.8269
∆rF,2 -1.9968 6.4767 0.7579
SPRETURNS 0.6308 0.6169 0.3065
si,t−1 0.7907 0.0226 < 0.001

TABLE 10. Corporate bond yield spreads sit in basis points, 2SLS Estimates, fixed effects model (N = 179

bonds, T = 952, 80,801 observations, intercept and fixed effects not reported). SEW is the White (1980)

adjusted standard error with the corresponding p-value in the last column.
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Variable βi SEW (βi) p-value

CLOUDCOV ER 0.3759 1.3462 0.7801
V ISIBILITY 0.0002 0.0007 0.8184
PRECIPITATION 0.0041 0.7007 0.9953
TEMPDS 0.0536 0.2971 0.8569
HUMIDITY -0.0166 0.1816 0.9272
BAROPRESS -0.1347 0.3179 0.6718
WINDSPEED 0.0661 0.7483 0.9296
CLOUDCOV ERt−1 -0.0735 0.3376 0.8277
V ISIBILITYt−1 0.0001 0.0002 0.6147
PRECIPITATIONt−1 -0.0099 0.0319 0.7557
TEMPDS,t−1 -0.0292 0.1122 0.7948
HUMIDITYt−1 0.0298 0.0909 0.7427
BAROPRESSt−1 0.0506 0.1485 0.7334
WINDSPEEDt−1 0.1453 0.3169 0.6465
MONDAY -0.0333 0.6168 0.9570
V IX 0.1554 0.5079 0.7597
∆rF,2 0.6588 4.8118 0.8911
V IXt−1 -0.1484 0.5232 0.7768
∆rF,2,t−1 1.6744 5.6698 0.7678
STRt−1 -0.9940 2.1977 0.6511

TABLE 11. Stock returns STR, 2SLS Estimates, fixed effects model (N = 23 stocks, T = 952; 19,928 observa-

tions; intercept, fixed effects and component-specific parameters for SPRETURNS not reported). SEW is the

White (1980) adjusted standard error with the corresponding p-value in the last column.
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significant weather effects. Based on this analysis we conclude even when splitting up the

weather effects for different classes of credit risk, no weather effects can be detected.

For the corporate bond spreads we also used other liquidity proxies, namely a proxy of the

daily trading V OLUME (proxy, since in the TRACE data base volumes beyond 5,000,000

are just listed as ”>5,000,000”) and a variable RANGE representing the difference between

the highest and the smallest price on that day. Adding these two variables to the regressors

used in Tables 5 and 10 does not show any weather effects.

Also, with the corporate bond spreads regression we replaced the S&P 500 returns by the

stock returns of that particular issuer. Also, here we do not observe any weather effects. R2

does not improve with the individual stock returns.

Working with levels of the bond spreads and the VIX index and with the first differences

of the risk-free rate (rF ) was based on unit root tests presented in Appendix B. In contrast to

this approach we also run the regressions of Sections 4.1 and 4.2 for rF in levels and for the

VIX volatility index and the bond spreads in first differences. Here we did not observe any

weather effects, either.

Proceeding with the stock market regressions, as, in contrast to the other regressions, here

the dependent variable is an ex-post return, we used both the actual and the lagged weather

variables. Alternatively and for comparison, we run these regressions with only the actual

weather variables using the lagged weather variables as instruments. Although this neglects

the possible impact of yesterday’s weather on today’s stock returns, we simply check if the

weather shows any effects in this setting. For both the two stage least squares estimates and

the instrumental variable estimates, we did not observe any weather effects at a 5% significance

level. Two lags for the weather are not sufficiently informative.

Moreover, the instruments w̃2
t and w̃2

t−1 have been used in Table 8, while w̃2
t−1 and wt−2

have been used for the stock returns in Table 11. For completeness, we also check whether

different combinations from the set {w̃2
t , w̃

2
t−1, wt−2, wt−3} provide us with more efficient results

or results where some weather variables are significant. With these specifications we can
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observe neither any improvements regarding the standard errors nor significant weather effects.

Another robustness check involves the lagged weather: Persinger (1975) detects an impact

of the weather two days ago on the current mood. Therefore, we also regressed the financial

market variables on the two and three days lagged weather using least squares. However, we

did not find any significant impact.

At the beginning of Section 4.2 we already mentioned that an endogeneity problem might

arise due to the interdependence of different financial sub-markets. To cope with possible en-

dogeneity we performed additional instrumental variable estimation for the aggregated data,

which are the risk-free interest rate, the S&P 500 index and the VIX index. Similar to the ro-

bustness checks in Jacobsen and Marquering (2008), the variables ∆rF,2, S&P 500 returns and

V IX were instrumentalized by their lags. Since in the regressions with the response variables

S&P 500 return and the panel of the risk-free rates the first order autocorrelation is low, it was

hard to find good instruments. With this specification we do not observe any weather effects

either. Additionally, two stage least squares estimates on a disaggregated level, where ∆rF,2,

SPR and V IX are instrumentalized by their lags, do not show any weather effects. Another

way to cope with possibly endogenous control variables is to perform instrumental variable

estimation with the weather variables only. With this analysis we cannot detect any weather

effects, either. The smallest p-value for the weather variables was 8% (temperature) for rF ,

8% (cloud cover) for the S&P 500, 16% (barometric pressure) for the VIX, 16% (temperature)

for the bond spreads and 8% (cloud cover) for the individual stock returns.

Based on the discussion of the latent mood variable and the weather in Section 2, as an

alternative to instrumental variable estimation we tried to estimate linear state space models

(for the dependent variables considered) of the form

yit = αi + βµµt + βccit + εit

µt = γ0 + γµµt−1 + γwwt + ut . (15)
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Unfortunately this estimation was not feasible. The variance of the noise term ut was estimated

to be very close to zero, such that the software package was not able to calculate standard

errors of the parameters. Therefore, we cannot obtain any reliable results by using (15). This

is also consistent with our regression results showing that the weather does not have any

impact on security prices: If in equation (15) the weather has no significant influence on the

latent µt (and no further first order autoregressive latent process with variance larger zero

exists), then µt would follow a deterministic trend. In this case (15) is not identified.

One could argue that we could have an omitted variable problem in the regressions so

far, because the mood could be additionally driven by seasonal affective disorder (see e.g.

Kamstra et al. (2000) and the literature already cited in Section 1). If SAD has an im-

pact on mood and mood influences the prices on the financial market and if the SAD vari-

able and some weather variables are correlated, the least squares estimator is biased in the

regression considered above (omitted variable problem). To cope with this issue, we down-

loaded SAD proxy (SAS Onset and Recovery) data from the web-page of Mark Kamstra

(http : //markkamstra.com/data.html) and included this variable in all our regression set-

tings (least squares and instrumental variable estimation). Neither the SAD proxy nor the

weather variables turned out to have a significant impact.

Finally, we added the weather variable TEMPDS × 1{Temp≥median(Temp)}; where

1{Temp≥median(Temp)} is equal to one if the temperature on day t is equal to or above the

median temperature for the time span considered. This variable can be motivated by the

claim, in line with Keller et al. (2005), that deviations from the weekly mean, measured by

TEMPDS , are different in periods where the temperature is low compared to periods where

the temperature is high (e.g. ”a positive TEMPDS in the winter improves mood since it is

not so cold” while ”a positive TEMPDS in the summer deteriorates mood since it is even

hotter”). This variable has been added to all the models estimated in Section 4. Also, this

weather variable turned out to be insignificant.
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4.4 Discussion of the Results

Our results of no significant impact of the weather variables are consistent e.g. with Trombley

(1997), Krämer and Runde (1997), Pardo and Valor (2003), Levy and Galili (2008) or Jacobsen

and Marquering (2008), however conflict with some other literature that shows a significant

impact of weather on stock returns (e.g. Saunders (1993), Hirshleifer and Shumway (2003),

Cao and Wei (2005) or Goetzmann and Zhu (2005)). There are several potential reasons why

in our study weather effects often detected on the stock market do not show up:

(i) Psychological arguments and changes in the environment: One potential explanation

of the fact that we do not find any weather effects on these financial sub-markets is that there

is no or only a small impact of weather on the mood. This potential interpretation would be

consistent with the findings of Clark and Watson (1988) or Watson (2000) who detect only a

small impact of weather on mood. A related argument comes from Keller et al. (2005) finding

that the impact of weather on mood is driven by two moderator variables, namely the season

and the time spent outside. As people in industrialized countries spend a large percentage of

their time inside (e.g. in trading rooms without windows) and thus are largely disconnected

from the weather outside (see Woodcock and Custovic (1998)), the people’s mood may be

less driven by the weather. Moreover there are also other mood determinants, that we did

not control for, e.g. natural disasters or personal life events. In this context we also refer the

reader to the streams of literature analyzing the impact of cinema program (Lepori (2010))

or sport results (Ashton et al. (2003), Edmans et al. (2007)) (via mood) on asset prices.

Moreover, as a result of the first papers in this field the market participants could have

become more rational and learned to filter out the impact of weather-induced mood on their

investment decisions (successful ”‘debiasing”’). However, two arguments speak against this

interpretation: Neglecting the impact of weather-induced mood on risk-taking behavior seems

to oppose plenty of literature in the field of psychology as cited in the introduction. Also,

this would contradict Hirshleifer (2001) and Menkhoff and Nikiforow (2009) who argue that

”behavioral finance patterns are so deeply rooted in human behavior that they are difficult to
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overcome by learning”.

Alternatively, firms (asset management companies, brokers, . . . ) may have reacted to the

findings on the impact of weather on mood and indirectly on the quality of decision-making and

in order to prevent irrational decisions have shielded their employees from weather conditions

(e.g. by installing air condition . . . ); see Cao and Wei (2005)[p. 1562] for a related argument.

This explanation would be consistent with a trend in the results of the studies that investigate

weather effects on the stock market. Even though Yoon and Kang (2009) report that after the

1997 financial crisis the presence of a weather effect disappeared and that the weather effect

was weakened over time, maybe as the result of heightened market efficiency, and Saunders

(1993) shows a similar vanishing of the weather effect in the last years of his observation

period, overall, it is not the case that old studies show an impact whereas new studies do not

show an impact of weather on stock returns.

(ii) Aggregation: Another problem may occur from the aggregation of mood effects of all

market participants. The same changes in weather variables may affect the mood of people

in very different ways (see Denissen et al. (2008), or Keller et al. (2005) showing differences

in the direction of the effect of weather on mood depending on the time spent outside) which

would blur the link between weather and aggregated mood. Apart from this the link between

mood and risk aversion is ambiguous. Some investors could react according to the affect

infusion model (positive mood implies a decrease in risk aversion) whereas other investors

could be subject to the mood maintenance hypothesis (positive mood implies an increase in

risk aversion). Similarly, as we show in Remark 2.1, if people follow the mood maintenance

hypothesis (good mood increases the risk aversion) and nice weather increases the people’s

optimism, it may be that weather has an impact on mood, but the effects work against each

other and may cancel out each other. So, measured over all market participants the different

effects of weather via mood on the risk-taking behavior could cancel out each other resulting

in insignificant results.

(iii) Econometrics & Data: Consistent with the findings of Trombley (1997), Krämer and
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Runde (1997) and Jacobsen and Marquering (2008), our study shows a strong impact of the

statistical method used (see Tables 2 to 11). In addition, most studies use different data sets to

test for weather effects. Since different samples from the full population can produce different

results, there is still the opportunity of the type one and the type two error, i.e. weather

effects are inferred although they are not present and vice versa.

5 Conclusions

This article investigates the possible impact of the weather on financial market data. The

main finding of this paper is that weather variables do not have an effect on the risk-free

interest rates, corporate bond spreads, the S&P 500 index, the individual stock returns and

the VIX volatility index.

In more detail, first we show that of all the weather variables used, the temperature is

the only variable that needs to be deseasonalized. So, the standard technology used in the

Behavioral Finance literature, namely to deseasonalize all weather variables is not necessary,

however it does not cause wrong inference. Second, using least squares estimates for a fixed

effects model, not accounting for heteroscedasticity, would suggest that financial data are

significantly influenced by the weather. Accounting for the existing heteroscedasticity present

in the residuals, almost all weather effects vanish. So, the weather effects that would be

”detected” by means of least squares standard errors vanish as soon as robust standard errors

are used. Thus, misspecification of the model may give erroneously the illusion of weather

effects on the financial markets.

Third, we also investigated the claim that weather affects mood, while mood influences

asset prices via risk aversion and perceptions of the risk and expected return. An asset pricing

model is constructed to describe this mechanism. E.g. based on the affect infusion model,

where positive mood reduces the risk aversion, the model predicts that with improving weather

the ex-ante expected asset returns and the asset volatilities decrease. Given our data we use

the weather data as a proxy for mood and perform an instrumental variable estimation. In
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this analysis no significant weather effects can be observed, either.
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A Bond Sample

This appendix gives a more detailed survey of the bonds used and how the bond spreads

were calculated. At the end we present tables with the bonds used in the empirical analysis.

For the initial sample of bonds (bonds included in the NASD Bloomberg Active Investment

Grade U.S. Corporate Bond Index as of July 19, 2006; see Section 3.2), we obtained the bond

characteristics and essential issuer characteristics from Bloomberg. Afterwards, we further

restricted our bond sample according to the following guidelines: We excluded all bonds

from issuers outside the USA and bonds denominated in currencies other than USD. By

eliminating bonds with embedded options (callable and putable bonds) and sinking fund

provisions, floating rate notes, bonds with a time-dependent coupon (step up bonds), bonds

where the coupon was rating-sensitive, subordinated bonds and secured bonds we further

restricted the sample. Concerning the allocation of bonds to issuers, we considered bonds

issued by a (financing) subsidiary and guaranteed by its parent as issued by the parent.

For these bonds, we obtained transaction by transaction bond prices from the TRACE

system. TRACE (”Transaction Reporting and Compliance Engine”) is an over-the-counter

(OTC) corporate bond market real-time price dissemination service, that has been created

by the NASD (National Association of Security Dealers), which meanwhile merged into the

Financial Industry Regulatory Authority (FINRA). The purpose of this service was to increase

the price transparency in the secondary corporate bond market. As of July 1, 2002, NASD

required that transaction information be disseminated for investment grade securities with

an initial issue size of $1 billion or greater. Meanwhile it provides information on almost

100 percent of OTC secondary market activity representing over 99 percent of total U.S.

corporate bond market activity in over 30,000 securities. All brokers/dealers who were NASD

member firms were obliged to report transactions in corporate bonds to TRACE under an

SEC approved set of rules. Each record indicates the bond identifier, the transaction date

and time, the clean price and the volume of the transaction (par value traded, truncated at

50



$1 million for speculative grade bonds and at $5 million for investment grade bonds). For

further information on TRACE see Goldstein et al. (2007), Bao et al. (2008), Bessembinder

and Maxwell (2008) or Bessembinder et al. (2009). Use of TRACE data involves the benefit

that all prices in our study are based on real transactions. So we do not have to make use of a

matrix algorithm (see Sarig and Warga (1989)) or use prices computed by database providers

in any way. Also, the use of transaction prices instead of prices merely provided by an exchange

is strongly favored in literature (see e.g. Sarig and Warga (1989) and Warga (1991)).

Due to low liquidity and in analogy to Elton et al. (2001), Eom et al. (2004) and Driessen

(2005), we eliminated all transactions within the last year of the bonds life. As the intraday

volatility of bond prices in the TRACE system is enormous (see Goldstein et al. (2007))

we converted transaction prices into daily prices using the following algorithm: First, we

eliminated small trades (volume less than 50,000 USD). From the remaining transactions,

we computed for each day the mean of the individual transactions’ prices and excluded all

transactions on day t where the price deviated by more than 5% (in either direction) from the

previous day’s price or the mean of that day. In the sequel, we use as daily price the median

of the prices of the remaining transactions. It goes without saying that we obtained the gross

price (dirty price) by adding accrued interest. Also, we paid attention to any short/long first

or short/long last coupons.

We excluded all bonds where (after the algorithm described above) more than 20% of the

days between July 1, 2002 (or the later issue of the bond) and March 31, 2006 (or the earlier

date that represents one year prior to maturity of the bond) were days without a (remaining)

transaction.

We added one more restriction: For each issuer we required that on each day between

July 1st, 2002, (or the later date described before) and March 31st, 2006, (or the earlier

date described above) at least two bonds fulfilling the criteria above exist (not necessarily

traded on that particular day), because pairwise comparisons of intra-firm spreads enable us

to additionally check the quality of the data. If this was not the case but could be achieved
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by restricting to a shorter issuer-specific observation period (e.g. two bonds existed only from

a date after July 1st, 2002, or only up to a date before March 31st, 2006), we did this. I. e.

for each issuer we computed the first and the last date where at least two bonds were traded.

We discarded all issuers, where after the steps described so far this time period was less than

two years. After all these steps, 179 bonds, issued by 23 issuers, remained. This resulted in a

total of more than 80,000 bond observations.

Tables 12-15 show the bonds used in the empirical analysis. The characteristics presented

in these tables are:

No. . . . Number of the bond in our study.

Bond ID . . . Trace code of the bond.

Issued . . . Issue date of the bond (MM/DD/YYYY).

Maturity . . . Maturity of the bond (MM/DD/YYYY).

Amount . . . Amount issued of the bond (in USD).

Coupon . . . Coupon rate of the bond (% of face value).

Miss . . . Percentage of missing values (between issue date and maturity), as a decimal.

TABLES 12-15 ABOUT HERE
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No. Bond ID Issued Maturity Amount Coupon Miss
1 AXP.GD 9/12/2001 9/12/2006 1,000,000,000 5.5 0.15
2 AXP.IE 11/20/2002 11/20/2007 750,000,000 3.75 0.14
3 AXP.IN 7/24/2003 7/15/2013 1,000,000,000 4.875 0.12
4 AXP.JQ 6/17/2004 6/17/2009 500,000,000 4.75 0.14
5 AXP.IL 5/16/2003 5/16/2008 1,000,000,000 3 0.09
6 AXP.KH 12/2/2005 12/2/2010 600,000,000 5 0.02
7 AIG.QR 9/30/2002 10/1/2012 1,000,000,000 5.375 0.06
8 BAC.GF 10/9/2001 10/15/2006 1,000,000,000 4.75 0.07
9 BAC.GG 1/31/2002 2/1/2007 1,500,000,000 5.25 0.06
10 BAC.XQ 9/25/2002 9/15/2012 1,000,000,000 4.875 0.07
11 BAC.XV 11/7/2002 11/15/2014 1,000,000,000 5.125 0.16
12 BAC.YK 11/26/2002 1/15/2008 1,000,000,000 3.875 0.06
13 BAC.ZB 1/23/2003 1/15/2013 1,000,000,000 4.875 0.13
14 BAC.GBX 7/22/2003 8/15/2008 1,000,000,000 3.25 0.09
15 BAC.GDF 11/18/2003 12/1/2010 1,000,000,000 4.375 0.08
16 BAC.GEE 1/29/2004 2/17/2009 1,000,000,000 3.375 0.18
17 BAC.GHT 8/26/2004 10/1/2010 750,000,000 4.25 0.13
18 BAC.GMI 7/26/2005 8/1/2015 1,250,000,000 4.75 0.18
19 BAC.GMK 7/26/2005 8/1/2010 1,250,000,000 4.5 0.08
20 ONE.IF 8/8/2001 8/1/2008 1,250,000,000 6 0.10
21 ONE.QC 6/18/2003 6/30/2008 1,000,000,000 2.625 0.19
22 BAC.PK 2/8/1999 2/15/2009 1,500,000,000 5.875 0.11
23 BSC.QL 11/6/2002 11/15/2014 1,700,000,000 5.7 0.18
24 BSC.HI 1/15/2002 1/15/2007 1,000,000,000 5.7 0.10
25 BSC.QT 12/26/2002 1/31/2008 1,000,000,000 4 0.11
26 BSC.SC 6/25/2003 7/2/2008 1,000,000,000 2.875 0.16
27 BSC.UK 10/28/2003 10/28/2010 1,100,000,000 4.5 0.09
28 BSC.GDA 6/23/2005 6/23/2010 1,000,000,000 4.55 0.17
29 BSC.GDJ 10/31/2005 10/30/2015 1,000,000,000 5.3 0.13
30 CIT.GX 11/3/2003 11/3/2008 500,000,000 3.875 0.17
31 CIT.SJ 11/3/2005 11/3/2010 500,000,000 5.2 0.09
32 CIT.PK 4/1/2002 4/2/2007 1,250,000,000 7.375 0.17
33 CIT.PM 9/25/2002 9/25/2007 850,000,000 5.75 0.20
34 CIT.GB 12/2/2002 11/30/2007 800,000,000 5.5 0.18
35 CIT.PO 5/8/2003 5/8/2008 500,000,000 4 0.13
36 CIT.HU 2/13/2004 2/13/2014 750,000,000 5 0.18
37 CIT.JW 11/3/2004 11/3/2009 500,000,000 4.125 0.20
38 CIT.QH 2/1/2005 2/1/2010 750,000,000 4.25 0.17
39 CIT.QI 2/1/2005 2/1/2015 750,000,000 5 0.17
40 CIT.SO 11/23/2005 11/24/2008 500,000,000 5 0.05
41 CIT.SZ 1/30/2006 1/30/2016 750,000,000 5.4 0.08
42 CIT.HI 12/9/2003 12/15/2010 750,000,000 4.75 0.06
43 C.OA 1/16/2001 1/18/2011 2,500,000,000 6.5 0.07
44 C.OF 8/9/2001 8/9/2006 1,500,000,000 5.5 0.10
45 C.OG 2/21/2002 2/21/2012 1,500,000,000 6 0.14

TABLE 12
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No. Bond ID Issued Maturity Amount Coupon Miss
46 C.OH 3/6/2002 3/6/2007 1,500,000,000 5 0.07
47 C.GMV 1/31/2003 2/1/2008 3,000,000,000 3.5 0.03
48 C.HDA 2/9/2004 2/9/2009 1,500,000,000 3.625 0.14
49 C.HDI 5/5/2004 5/5/2014 1,750,000,000 5.125 0.13
50 C.HDO 7/29/2004 7/29/2009 1,000,000,000 4.25 0.06
51 C.HEK 8/3/2005 8/3/2010 1,250,000,000 4.625 0.16
52 C.HEM 12/8/2005 1/7/2016 1,000,000,000 5.3 0.07
53 C.HEQ 2/14/2006 2/14/2011 2,000,000,000 5.125 0.03
54 CCR.KN 8/8/2001 8/1/2006 1,625,000,000 5.5 0.05
55 CCR.LA 1/29/2002 2/1/2007 1,000,000,000 5.5 0.13
56 CCR.LG 5/17/2002 5/15/2007 1,000,000,000 5.625 0.14
57 CCR.LS 12/17/2002 12/19/2007 750,000,000 4.25 0.16
58 CCR.LY 5/21/2003 5/21/2008 1,000,000,000 3.25 0.10
59 CCR.MB 3/22/2004 3/22/2011 1,350,000,000 4 0.11
60 CCR.MN 9/16/2004 9/15/2009 1,250,000,000 4.125 0.07
61 DCX.GY 8/24/1999 9/1/2009 2,000,000,000 7.2 0.08
62 DCX.HN 1/16/2002 1/15/2012 1,500,000,000 7.3 0.16
63 DCX.SD 1/16/2003 1/15/2008 2,000,000,000 4.75 0.09
64 DCX.VC 6/10/2003 6/4/2008 2,500,000,000 4.05 0.05
65 DCX.XO 11/6/2003 11/15/2013 2,000,000,000 6.5 0.07
66 DCX.GDY 6/9/2005 6/15/2010 1,000,000,000 4.875 0.13
67 DE.IP 3/22/2002 3/15/2012 1,500,000,000 7 0.20
68 DE.IW 1/10/2003 1/15/2008 850,000,000 3.9 0.18
69 GE.AGS 5/2/2003 5/1/2008 2,000,000,000 3.5 0.03
70 GE.AIF 6/5/2003 6/15/2009 500,000,000 3.25 0.17
71 GE.GAV 8/19/2003 8/15/2007 800,000,000 3.5 0.07
72 GE.GBT 9/17/2003 9/25/2006 750,000,000 2.75 0.07
73 GE.GDN 12/1/2003 12/1/2010 1,000,000,000 4.25 0.04
74 GE.GDS 12/5/2003 12/5/2007 400,000,000 3.5 0.15
75 GE.GEK 1/13/2004 1/15/2007 1,000,000,000 2.8 0.10
76 GE.GGW 3/29/2004 4/1/2009 1,000,000,000 3.125 0.07
77 GE.GLD 9/17/2004 9/15/2014 1,250,000,000 4.75 0.18
78 GE.GMJ 10/29/2004 12/15/2009 1,000,000,000 3.75 0.09
79 GE.GMY 11/19/2004 11/21/2011 750,000,000 4.375 0.05
80 GE.GPM 3/4/2005 3/4/2008 1,600,000,000 4.125 0.04
81 GE.GPN 3/4/2005 3/4/2015 1,000,000,000 4.875 0.08
82 GE.GUW 10/21/2005 10/21/2010 1,250,000,000 4.875 0.06
83 GE.GWN 1/9/2006 1/8/2016 1,250,000,000 5 0.05
84 GE.TK 1/19/2000 1/19/2010 1,500,000,000 7.375 0.17
85 GE.UQ 2/21/2001 2/22/2011 1,825,000,000 6.125 0.10
86 GE.WA 2/15/2002 2/15/2007 1,250,000,000 5 0.07
87 GE.WB 2/15/2002 2/15/2012 2,650,000,000 5.875 0.04
88 GE.ZE 3/20/2002 3/15/2007 2,275,000,000 5.375 0.06
89 GE.AAD 6/7/2002 6/15/2012 4,150,000,000 6 0.04
90 GE.AAA 6/7/2002 6/15/2007 2,250,000,000 5 0.04
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No. Bond ID Issued Maturity Amount Coupon Miss
91 GE.ZY 9/24/2002 9/15/2009 1,350,000,000 4.625 0.03
92 GE.ACE 12/6/2002 1/15/2013 3,000,000,000 5.45 0.05
93 GE.ACF 12/6/2002 1/15/2008 2,000,000,000 4.25 0.03
94 GS.JO 5/19/1999 5/15/2009 1,800,000,000 6.65 0.05
95 GS.JR 9/29/1999 10/1/2009 1,000,000,000 7.35 0.13
96 GS.KJ 1/16/2001 1/15/2011 2,850,000,000 6.875 0.06
97 GS.OU 8/27/2002 9/1/2012 1,500,000,000 5.7 0.08
98 GS.PB 11/15/2002 11/15/2014 1,300,000,000 5.5 0.16
99 GS.PX 1/13/2003 1/15/2008 2,000,000,000 4.125 0.03
100 GS.QK 3/31/2003 4/1/2013 1,200,000,000 5.25 0.15
101 GS.RC 7/15/2003 7/15/2013 2,000,000,000 4.75 0.04
102 GS.RO 10/14/2003 10/15/2013 1,750,000,000 5.25 0.07
103 GS.UG 1/12/2005 1/15/2015 2,250,000,000 5.125 0.03
104 GS.VN 1/17/2006 1/15/2016 2,500,000,000 5.35 0.03
105 GS.VO 1/17/2006 1/15/2011 750,000,000 5 0.03
106 GS.RX 1/13/2004 1/15/2009 1,500,000,000 3.875 0.07
107 GS.RW 1/13/2004 1/15/2014 1,500,000,000 5.15 0.06
108 HI.KJ 6/17/1998 6/17/2008 1,750,000,000 6.4 0.08
109 HI.KP 2/5/1999 2/1/2009 1,300,000,000 5.875 0.06
110 HI.KT 3/1/2000 3/1/2007 1,500,000,000 7.875 0.13
111 HI.KZ 10/23/2001 10/15/2011 2,000,000,000 6.375 0.08
112 HI.LA 1/30/2002 1/30/2007 2,500,000,000 5.75 0.04
113 HI.AAB 5/22/2002 5/15/2012 1,750,000,000 7 0.16
114 HI.HEL 7/21/2003 7/15/2013 1,250,000,000 4.75 0.08
115 HI.HJF 12/10/2003 12/15/2008 1,500,000,000 4.125 0.03
116 HI.HLX 5/26/2004 5/15/2009 1,250,000,000 4.75 0.08
117 HI.HPN 11/23/2004 11/16/2009 1,750,000,000 4.125 0.05
118 AIG.LY 10/17/2001 10/15/2006 700,000,000 5.75 0.14
119 AIG.QJ 5/29/2002 6/1/2007 900,000,000 5.625 0.11
120 AIG.SA 4/29/2003 5/1/2013 600,000,000 5.875 0.19
121 AIG.GHW 4/11/2005 4/15/2010 800,000,000 5 0.10
122 AIG.GJT 8/23/2005 9/1/2010 600,000,000 4.875 0.06
123 JPM.MA 8/14/2001 8/15/2006 2,000,000,000 5.625 0.10
124 JPM.MB 3/6/2002 3/1/2007 1,500,000,000 5.35 0.13
125 JPM.QF 5/30/2002 5/30/2007 2,000,000,000 5.25 0.06
126 JPM.QY 1/30/2003 2/1/2008 1,000,000,000 4 0.12
127 JPM.RL 4/24/2003 5/1/2008 800,000,000 3.625 0.13
128 JPM.TH 11/7/2003 11/15/2010 750,000,000 4.5 0.08
129 JPM.TZ 12/11/2003 12/11/2006 500,000,000 3.125 0.13
130 JPM.VI 3/9/2004 3/15/2009 1,000,000,000 3.5 0.17
131 JPM.ZZ 12/14/2004 1/15/2012 850,000,000 4.5 0.11
132 KFT.GC 11/2/2001 11/1/2006 1,250,000,000 4.625 0.07
133 KFT.GD 11/2/2001 11/1/2011 2,000,000,000 5.625 0.07
134 KFT.GH 5/20/2002 6/1/2007 1,000,000,000 5.25 0.11
135 KFT.GG 5/20/2002 6/1/2012 1,500,000,000 6.25 0.17

TABLE 14
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No. Bond ID Issued Maturity Amount Coupon Miss
136 KFT.GL 11/12/2004 11/12/2009 750,000,000 4.125 0.16
137 LEH.OQ 1/21/2003 1/22/2008 1,500,000,000 4 0.04
138 LEH.RV 7/28/2003 8/7/2008 1,000,000,000 3.5 0.09
139 LEH.ZZ 7/13/2005 7/26/2010 1,000,000,000 4.5 0.10
140 LEH.GBX 12/21/2005 1/14/2011 750,000,000 5 0.05
141 LEH.MW 1/10/2002 1/18/2012 1,500,000,000 6.625 0.18
142 LEH.TX 2/25/2004 3/13/2014 1,150,000,000 4.8 0.16
143 LEH.XS 1/11/2005 1/27/2010 1,100,000,000 4.25 0.17
144 MER.HE 2/17/1999 2/17/2009 2,000,000,000 6 0.06
145 MER.VF 11/15/2002 11/15/2007 1,000,000,000 4 0.05
146 MER.GBI 4/21/2003 4/21/2008 950,000,000 3.7 0.15
147 MER.GDA 9/15/2003 9/14/2007 500,000,000 3.375 0.14
148 MER.GDN 11/4/2003 11/4/2010 700,000,000 4.5 0.14
149 MER.GDW 12/4/2003 1/15/2009 1,075,000,000 4.125 0.09
150 MER.GGW 9/10/2004 9/10/2009 1,000,000,000 4.125 0.08
151 MER.GHM 11/22/2004 1/15/2015 1,850,000,000 5 0.06
152 MER.GIC 2/7/2005 2/8/2010 1,500,000,000 4.25 0.08
153 MER.GKF 8/4/2005 8/4/2010 1,300,000,000 4.79 0.05
154 PFE.GH 2/3/2004 3/15/2007 700,000,000 2.5 0.20
155 PFE.GI 2/3/2004 2/15/2014 750,000,000 4.5 0.20
156 PG.GI 9/16/1999 9/15/2009 1,000,000,000 6.875 0.10
157 PG.GR 6/11/2002 6/15/2007 1,000,000,000 4.75 0.08
158 PG.GS 8/7/2002 8/15/2008 500,000,000 4.3 0.14
159 WB.MV 11/2/2001 11/1/2006 1,750,000,000 4.95 0.05
160 WB.NO 7/25/2003 8/15/2008 750,000,000 3.5 0.13
161 WB.NR 2/6/2004 2/17/2009 1,250,000,000 3.625 0.15
162 WMT.GO 8/10/1999 8/10/2009 3,500,000,000 6.875 0.04
163 WMT.GT 7/31/2001 8/1/2006 1,500,000,000 5.45 0.05
164 WMT.HE 7/12/2002 7/12/2007 1,500,000,000 4.375 0.04
165 WMT.HN 4/29/2003 5/1/2013 1,500,000,000 4.55 0.04
166 WMT.HO 10/2/2003 10/1/2008 1,000,000,000 3.375 0.05
167 WMT.HP 2/18/2004 2/15/2011 2,000,000,000 4.125 0.03
168 WMT.HR 1/20/2005 1/15/2010 1,000,000,000 4 0.10
169 WMT.HT 6/9/2005 7/1/2010 1,250,000,000 4.125 0.11
170 WMT.HU 8/15/2005 8/15/2010 800,000,000 4.75 0.05
171 WM.HF 1/11/2002 1/15/2007 1,000,000,000 5.625 0.19
172 WM.IE 11/3/2003 1/15/2009 1,000,000,000 4 0.10
173 WFC.IF 2/5/2002 2/15/2007 1,500,000,000 5.125 0.06
174 WFC.KD 3/25/2003 4/4/2008 1,100,000,000 3.5 0.05
175 WFC.KK 3/24/2004 4/1/2009 1,500,000,000 3.125 0.18
176 WFC.GBX 12/6/2004 1/15/2010 2,500,000,000 4.2 0.06
177 WFC.GCJ 3/9/2005 3/10/2008 1,100,000,000 4.125 0.11
178 WFC.GCS 8/8/2005 8/9/2010 1,000,000,000 4.625 0.09
179 WFC.GCV 1/12/2006 1/12/2011 1,500,000,000 4.875 0.10

TABLE 15
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B Unit Root Tests

To specify the regression setting more closely, we have to find out for each of the variables

described in Section 3 if it is stationary or not. While levels can be used for stationary

data, for non-stationary variables first differences (denoted by ∆) are more appropriate (if

necessary higher order differences have to be used).16 Providing a brief summary, let us start

with the corporate bond spreads. With the panel unit root tests we observe that the Levin

et al. (2002) test does not reject the null hypothesis of a unit root, the other panel unit

root tests implemented in EViews (Breitung (2000) test, assuming a common autoregressive

coefficient, and Im et al. (2003) test, allowing for different autoregressive terms) however do.

To get a clearer picture, we performed unit root tests on a single time series basis: namely

the Dickey/Fuller test, the Augmented Dickey/Fuller test and the Phillips/Perron test (for

a description of these tests see e.g. Hamilton (1994)). With all these three tests the null

hypothesis of a unit root was rejected, both with and without including a time trend. Based

on these results we decide to treat the spreads as stationary random variables and work with

the spread levels. Similarly, for the variables V OLUME and RANGE all unit root tests

reject the null of a unit root.

Based on the unit root tests the S&P 500 returns can be considered to be stationary. The

same statement holds for the individual stock returns STR. A further critical candidate is

the VIX volatility index. We observe p-values of 14.65 and 8.1 percent for the Augmented

Dickey Fuller tests without and with a time trend, respectively. By this result we assume that

the VIX is stationary. Things are less clear with the risk-free rates. With different tests we

receive different answers to the question whether interest rates are stationary or not. Thus, in

16Detailed results of these tests for all variables can be obtained from the authors on request. Throughout
this paper the EViews package was used. In all these tests the null hypothesis of a unit root process is tested
against the alternative of no unit root. In the simplest setting, under the null the process follows xt = xt−1+ut,
where ut ∈ R is iid with finite second moment, which implies that the support of xt is the real axis. Although
for a lot of the random variables considered here the range is only a proper subset of the real axis, we follow
applied econometrics and quantitative finance literature and still use the unit root tests to check for possible
non-stationarity.
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the regressions we work with first differences. Since the distance to default is calculated based

on non-stationary variables we applied first differences. As regards the weather variables we

observe that for the deseasonalized temperature, barometric pressure, visibility, precipitation,

wind speed, cloud cover and humidity the null hypothesis of a unit root has to be rejected.

Thus, we work with levels.
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C Deseasonalization of the Weather Data

The goal of this appendix is to compare different deseasonalization techniques, to check the

necessity of deseasonalization and to investigate the impact of (lacking) deseasonalization on

parameter estimation and inference. The questions investigated in the latter part are:

1. Question 1: If a seasonal component exists but the data are not deseasonalized, what is

the impact on inference?

2. Question 2: If there is no seasonal component in the data but deseasonalization is

applied, what is the impact on inference?

To find answers to these questions we generate a (weather) variable, xt, with a cyclical and a

stochastic component, that may have an impact on a simulated (financial market) variable yt.

Based on these simulated time series we perform standard t tests for the regression parameters

that should provide us with answers to the questions raised.

We generate simulated data by means of the steps S1 to S4 as follows:

S1 The cyclical deterministic component x̃1 is modeled by means of x̃1(τ) = 1/
√
π cos (2πτ).

Note that x̃1(τ) corresponds to a Fourier polynomial of order p = 1 (see e.g. Harrison and

West (1997)[Chapter 8]). To derive discrete data at period t, t = 1, . . . , T , we calculate

x̃1(t∆); ∆ = 1/252 is the step-width. τ = 1 should correspond to one year. This results

in the values x̃1t for the cyclical component at period t.

S2 The non-cyclical, stochastic component x̃2t ∼ N (0, σ2), where we use σ2 = 1.

S3 The simulated prediction variable observed, xt, is the sum of the scaled cyclical compo-

nent (x1t) and the scaled non-cyclical component (x2t):

xt = x1t + x2t =
√
ωx̃1t +

√
1− ωx̃2t where ω ∈ [0, 1] . (16)
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This random variable xt has an expected value of zero and a variance of one. ω represents

the impact of the cyclical part, x̃1t, on the variance of xt. ω · 100 measures this impact

in percentage terms. The higher ω the stronger the impact of the cyclical part. In our

further analysis ω = {0, 0.1, 0.5, 0.9} will be used.

S4 Suppose that neither x1t nor x2t but only the sum xt is observed. We want to estimate

the scaled cyclical component x1t from observations of xt. x̂1t is an estimate of the

cyclical part x1t =
√
ωx̃1t. An estimate of the non-cyclical term, x2t, is derived by

x̂2t = xt − x̂1t.

Based on this simulated data we want to compare the following three deseasonalization

approaches:

1. Naive: We do not believe in any cycle and assume that the data are iid. Thus, we waive

any deseasonalization: x̂Naive2t = xt. For ω = 0 this would be the correct specification.

2. Week: We create buckets of weekly data and calculate weekly means. This results in

x̂Week
1t . This technique is e.g. presented in Harrison and West (1997)[Chapter 8.2] and

has developed as the standard in the Behavioral Finance literature (see e.g. Hirshleifer

and Shumway (2003), Loughran and Schultz (2004), Goetzmann and Zhu (2005), Keef

and Roush (2005) or Chang et al. (2008)).

3. Fourier: We approximate xt by a Fourier polynomial (trigonometric polynomial) of

order p. This is a standard way to filter out cyclical components in many disciplines

(see e.g. Harrison and West (1997)[Chapter 8]). The polynomial has 1 + 2p parameters.

This results in x̂Fourier,p1t .

To compare the models we use the following F-test: For each p = 1, 2, . . . , the residuals

x̂Fourier,p2t = xt − x̂Fourier,p1t result in the sums of squared residuals SSRFourier,p. Com-

paring a Fourier approximation of degree p to an approximation of degree q, q < p, the
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statistic

(SSRFourier,q − SSRFourier,p)/(2(p− q))
SSRFourier,p/(T − 2p)

(17)

is F distributed with 2(p− q) degrees of freedom in the numerator and T − 2p degrees

of freedom in the denominator. T is the number of observations. Since a constant can

be considered as polynomial of degree zero, q = 0 corresponds to Naive.

With x̂Week
2t we can proceed in the same way: The naive setting is a nested model of the

Fourier as well as of the Week methodology. Therefore we are allowed to use (17) also to test

the null hypothesis of no season against the alternative of a seasonal component described by

Week. This can be done by calculating SSRWeek and replacing in equation (17) SSRFourier,p

by SSRWeek and SSRFourier,q by SSRFourier,0 = SSRNaive. The number of parameters p to

derive SSRWeek is given by the number of weeks per year.

We used this methodology to check for each weather variable if there is a need for de-

seasonalization when using Week. The results of this investigation have been reported in

Section 3.

Equipped with these tools, for the data simulated by means of steps S1-S4, we observe

the following results:

(i) The approximation errors for Week and Fourier are small. For the simulated xt

described at the beginning of this section the Fourier deseasonalization technique with p = 1

results in the lowest approximation error of the cyclical component for all ω. For ω = 0.1 and

0.5 (low or medium seasonality) the Fourier setting with p = 6 is better than the methodology

Week, while with ω = 0.9 (strong seasonality) Week results in smaller errors than Fourier

with p = 6. The observation that the Fourier model slightly dominates Week is not a big

surprise since in our simulations the data generating process includes a Fourier cycle (see

step S1). With empirical weather data the data generating process is unknown. However

from the simulations we observe that Week provides us with a reasonable tool to filter out

seasonal components even if the true data generating process is different. (ii) The F-test
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described by (17) detects the correct Fourier model (true p) in more than 95% of the simulation

runs. This test also works with Week to differentiate between a model with and without

cyclical component. Based on these observations we conclude that the Week deseasonalization

technique used in the Behavioral Finance literature provides us with a good fit to the data

even if the true data generating process is based on a one year cosine-cycle (see step S1). In

addition testing for the presence of a seasonal component is feasible.

In the next step we want to find out whether (i) neglecting deseasonalization if a seasonal

component exists or (ii) performing deseasonalization if no seasonal component exists has an

impact on parameter estimation and inference. In other words we want to check whether the

above methodologies detect weather effects if they are present, and vice versa. We proceed as

follows: The response variable yt is generated by means of

yt = β0 + β2x2t + β3x3t + εt , t = 1, . . . , T. (18)

εt ∼ N (0, σ2R). σ2R = 0, 0.1, 0.5 or 1 (0 is only applied with ω > 0). x3t is a further predictor

variable which we simulated by means of a standard normally distributed variable. x2t is

the deseasonalized component derived above. We set β2 = 0 (no impact of the non-cyclical

component of the predictor variable xt) or β2 = 1 (there is an impact of the non-cyclical

component of the predictor variable).

Remark C.1. The experiment in this appendix can be linked to our weather analysis as

follows: yt corresponds to the financial market return, risk-free rate, yield spread or VIX

level, x2t corresponds to the non-cyclical (deseasonalized) part of a weather variable and x3t

stands for a control variable. Suppose that the financial variable yt, the (non-deseasonalized)

weather variable xt and the control variable x3t can be observed. Then: (i) Suppose that the

deseasonalized weather x2t has an impact on the financial market variable (i.e. β2 6= 0): We

use xt, apply the Week deseasonalization technique and then the test described in (17). Based

on this test we can decide to take either x̂2t = xt (if the test statistic in (17) favors no season)

62



or x̂2t = xWeek
2t (if the test statistic supports a seasonal component). In a next step, we run

the regression where yt is the response variable and the predictors are x̂2t and x3t. Finally, we

analyze if β2 is significantly different from zero. (ii) Suppose that there is no weather effect

(β2 = 0): Proceed in the same way as in (i). Equally, we want to know if β2 is insignificant

or not. I.e. this simulation analysis should provide us with information if weather effects can

be detected if present, or if weather effects are rejected if no weather effects are in the data.

As stated above, yt, xt and x3t can be observed. Then the deseasonalized components x̂
(.)
2t will

be estimated by means of the Fourier setting with p = 1, Week and Naive.17 α will represent

the usual significance levels 0.01, 0.05 and 0.1, respectively. Each simulation experiment is

replicated 1000 times. Here we observe the following:

1. β2 = 1, ω = 0 or ω = 0.1 (impact of the non-cyclical weather component exists, majority

of the weather variable xt is non-cyclical): All approaches (Naive, Week and Fourier)

reject the null hypothesis that β0 = 0 in approximately 1 − α% of the simulation runs.

This is in line with the desired results. The false null hypotheses β2 = 0 and β3 = 0 are

rejected in almost all simulation runs.

2. β2 = 0, ω = 0 or ω = 0.1 (no impact of the non-cyclical weather component, majority

of the weather variable xt is non-cyclical): We observe for β0 = 0 and β3 = 0 the

same results as in scenario 1 (i.e. the ”β2 = 1, ω = 0 or 0.1” scenario). The true null

hypothesis that β2 = 0 is not rejected in slightly more than 1 − α% of the simulation

runs. This is true for all deseasonalization approaches analyzed.

3. β2 = 1, ω = 0.5 (impact of the non-cyclical weather component exists, half of the weather

variable xt is cyclical): The results are similar to scenario 1. The only (small) difference

to scenario 1 is that the Naive approach does not reject the true null hypothesis for β0

with a probability slightly smaller than α.

17According to step S1 the Fourier model with p = 1 is the true model.
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4. β2 = 0, ω = 0.5 (no impact of the non-cyclical weather component, half of the weather

variable xt is cyclical): This scenario gives results very close to scenario 2 (where β2 = 0,

ω = 0 or 0.1).

5. β2 = 1, ω = 0.9 (impact of the non-cyclical weather component exists, majority of the

weather variable xt is cyclical): With all three deseasonalization approaches the true null

hypothesis that β0 = 0 is rejected in α + 2-3% more of the simulation runs. The false

null of β2 = 0 is still rejected for almost all runs with Week and Fourier. Depending

on the α used (1%, 5% or 10%), this false null is not rejected in 6-20% of the simulation

runs with the Naive approach. Thus, with this setting the Naive approach does not

work well anymore. This is plausible as the majority of xt is cyclical in this setting.

6. β2 = 0, ω = 0.9 (no impact of the non-cyclical component, majority of the weather

variable xt is cyclical): For all approaches the true null that β2 = 0 is not rejected in

approximately 1−α% of the simulation runs. This is clear, as the non-cyclical component

of the predictor variable has no impact on the response variable.

According to the questions raised at the beginning of this section we observe that:

1. ad Question 1: Suppose that a seasonal component exists in xt (i.e. ω > 0) and the

data are not deseasonalized (with the ”Naive” approach): If the response variable is

influenced by the non-cyclical part of xt (β2 6= 0), we observe from items 1, 3 and 5

that with a rising seasonal component (ω increasing), we obtain a substantial bias. If,

however, the response variable is not influenced by the non-cyclical part of xt (β2 = 0),

inference is not badly influenced (see items 2, 4 and 6).

2. ad Question 2: Suppose that there is no seasonal component in xt (i.e. ω = 0) but the

deseasonalization technique Week is applied: If the response variable is influenced by

the non-cyclical part of xt (β2 6= 0) as in item 1, we observe no problem if Week is

applied. If there is no impact of the weather (i.e. β2 = 0) item 2 also shows that using

the deseasonalization approach Week does not result in problems.
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Summing up, we observe only minor differences between the Week deseasonalization ap-

proach used in the Behavioral Finance literature and the smooth Fourier methodology used

in many other fields, not only in terms of the approximation quality (as already observed in

the above comparison) but also in terms of power and size of the parameter tests. If some

response variable is a linear function of the non-cyclical component and only the response

variable and a predictor including some seasonal effects are observed, the approach used in

the Behavioral Finance literature performs well to detect a linear dependence of the response

variable on the non-cyclical component of a predictor variable observed. The question whether

the data should be deseasonalized can be investigated by means of a test. Neglecting a sea-

sonal component has a negative impact on inference, while applying deseasonalization in the

absence of a seasonal component does not significantly deteriorate the performance of the

significance tests for the individual regression parameters.
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D A Note on Errors in Variables

The goal of this appendix is first to show that the least squares estimates become biased if

the error term and some predictor variable are correlated and second to describe a generalized

version of our setting in Section 4.2 with weather and mood in a multivariate context (i.e.

several weather variables, several mood dimensions). First, suppose that the weather influences

a latent variable called mood and the mood affects the response variable yt. In the following

formal steps we shall observe that the prediction variable may be correlated with the error

term, such that least squares estimates are biased. Consider the linear model:

yt = x>t β + εt , (19)

where yt ∈ R, xt ∈ Rk (k is the number of prediction variables) and εt is iid with an expectation

of 0 and variance σ2. β and σ2 are the true parameters. We observe yt and xt from t = 1, . . . , T .

By stacking yt, εt and xt we get the T × 1 matrix Y , the T × 1 matrix e, and the T × k matrix

X respectively.

The following steps are mainly based on Ruud (2000)[Chapter 19], assuming that the rank

condition is met. Therefore, if X has rank k and conditional on X the variance of Y is σ2IT ,

then the Gauss-Markov theorem holds: β̂OLS = (X>X)−1X>Y is unbiased and efficient (see

Ruud (2000)[page 187]). Let us consider the OLS estimator

β̂OLS = (X>X)−1X>Y = (X>X)−1X>(Xβ + e)

= β + (X>X)−1X>e = β + ET (x>t xt)
−1ET (xtεt) . (20)

β̂OLS is consistent if ET (xtεt) = 1
T

∑
t xtεt converges to zero in probability (ET (.) stands for

the conditional expectation E(.|FT ) with FT = σ(x1, . . . , xT )). Moreover, the estimator β̂OLS

is unbiased (i.e. E(β̂OLS − β) = 0 ) if the last summation term in equation (20) has an

expectation of zero, which requires that E(xtεt) = 0. This condition is fulfilled if E(εt|xt) = 0.
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However, if εt and xt are correlated this requirement is not fulfilled and the OLS estimator

results in biased and inconsistent estimates.

Second, let us consider the following errors in variables problem:18 In Section 4.2, µt stands

for the mood and wt for the weather variables driving the mood µt. For simplicity, both µt and

wt are of dimension kw. Assume that E(yt|µt) = µ>t βw but only a noisy linear transformation of

the mood vector µt is observed. We assume that this noisy linear transformation is represented

by the weather variables. Therefore, suppose that µt = Awt − ut. A is a kw × kw matrix of

full rank, ut is iid with an expectation of zero and a finite second moment. The matrix A

in this appendix measures the impact of the various weather variables on the different mood

variables. A is unknown, only positive or negative signs can be deduced from psychological

literature.19 In our quantitative analysis we cannot observe µt but only wt = A−1(µt + ut).

Then

yt = µ>t βw + c>t βc + εt = (w>t A
> − u>t )βw + c>t βc + εt

= w>t β̃w − u>t βw + c>t βc + εt = w>t β̃w + c>t βc + ηt (21)

where ηt = −u>t βw + εt and β̃w = A>βw. ct is a vector of exogenous control variables. Direct

calculations show that E(ηtwt) = −E(utu
>
t )βw which is in general not equal to zero. Note

that due to the term (X>X)−1 in equation (20), E(ηtwt) 6= 0 also results in biased estimates

of βc. Suppose that we are interested in the estimates of β̃w = A>βw. Then by equation (20)

and the fact that E(ηtwt) 6= 0, the OLS estimator provides us with inconsistent and biased

estimates. However, by means of instrumental variable estimation consistent and unbiased

18To keep the presentation simple we consider a standard regression setting. A fixed effects model can be
estimated by applying the within transform to the data (see e.g. Baltagi (2008)). After this transform has to
been implemented we end up with model (21) where yt and xt are the data transformed. After the parameters
βw and βc are estimated, the fixed effects αi follow from these estimates and the original data.

19This analysis can be extended to a structure where there are different dimensions of mood and weather.
Suppose that µt = Bwt − ũt, where µt ∈ Rkµ , wt ∈ Rkw and B is a kµ × kw matrix. Then β̃w = B>βw. wt
follows from µt = Bwt − ũt as long as a kw × kµ pseudo-inverse matrix of B exists.
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estimates can be derived.

Let us connect these results to Section 4.2: Equation (14) is a special case of this generalized

setting, where we set A equal to the kw × kw identity matrix and β̃w = βw. This special

case has been selected to improve the readability of Section 4.2. Therefore the model yt =

w>t β̃w + c>t βc + ηt (structurally identical to the model in Section 4.2) is a reduced form

representation of the larger model described in this appendix. Instrumental variable estimates

provide us with consistent and unbiased estimates of β̃w = A>βw. If element j of β̃w is

significant, then there is an impact of the weather variable j on the vector of mood variables

µt and µt then has an impact on the (financial market/response) variable yt.
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