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Abstract
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approximately) truthful revelation as the amount of asymmetric information goes to
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1 Introduction

The distinction between observable and veri�able information or the notion of ex ante non-

describability of states of nature, which underlie the incomplete contracts theory of Grossman

and Hart (1986) and Hart and Moore (1990)�have been recently questioned in various pa-

pers1 which all use or extend the subgame perfect implementation approach of Moore and

Repullo (1988). In particular Maskin and Tirole (1999a)2 argue that although parties may

have di¢ culty foreseeing future physical contingencies they can write contracts which specify

ex ante the possible payo¤ contingencies. Once the state of the world is realized, the parties

can ��ll in�the physical details. The latter step is subject to incentive-compatibility con-

siderations. That is, each agent must be prepared to specify the details truthfully. Maskin

and Tirole achieve this through a 3-stage subgame perfect implementation mechanism which

induces truth-telling by all parties as the unique equilibrium outcome3.

In this paper, we consider the robustness of the Moore-Repullo (MR) mechanism to

the introduction of small amounts of asymmetric information, and our main result is that

the MR mechanism may not yield even approximately truthful revelation as the amount of

informational asymmetry goes to zero.

We proceed in several steps. In Section 2 we introduce a simple example of ex-post bar-

gaining and exchange drawn from Hart and Moore (2003)�and based itself on the mechanism

in section 5 of Moore and Repullo (1988)�to illustrate our point on the robustness of the

MR mechanism to the introduction of small amounts of asymmetric information.

More precisely, we modify the signal structure of the game so that each player receives

private signals about the true value of the good, instead of knowing it perfectly; thus the value

is �almost common knowledge�in the sense of being common p-belief (Monderer and Samet

(1989)) for p near 1. Our main �nding is that the simple subgame-perfect implementation

mechanism à la MR for this example, does not yield approximately truthful revelation as the

1For example, see Aghion-Dewatripont-Rey (1999) and more recently Maskin-Tirole (1999a, 1999b).
2See also Maskin and Tirole (1999b).
3Whereas straight Nash implementation (see Maskin 1977, 1999) does not guarantee uniqueness.
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correlation between the private signals and the true value of the good becomes increasingly

perfect. 4

The intuition for this result is that the small amount of uncertainty at the interim stage,

when players have observed their signals but not yet played the game, can loom large ex post

once a player has sent a message. This is closely related to the observation that backwards

induction and related equilibrium re�nements are not in general robust to perturbations of

the information structure, (see Fudenberg, Kreps and Levine (1988), Dekel and Fudenberg

(1990) and Borgers (1994)) so that the predictions generated under common knowledge need

not obtain under almost common knowledge.

More speci�cally, in our modi�cation of the Hart-Moore-Repullo example, we suppose

that the Seller produces a good whose valuation is stochastic, and may be high or low. Each

contracting party gets a private and yet almost perfect signal about the good�s valuation;

the players have a common prior on the joint distribution of values and signals. The Moore-

Repullo mechanism requests, say the Buyer, to make an announcement about the value of the

good, and then the Seller is permitted to either challenge or not challenge this announcement.

There are a series of other steps involved if the Seller challenges. Obviously, under perfect

information, the Buyer�s announcement contains no information which the Seller did not

have. However, when each player receives a private signal about the value of the good, the

Buyer�s announcement does contain information�namely about her own signal of the good�s

valuation. The Seller will condition her belief both upon her signal and the announcement

made by the Buyer, and the resulting Bayesian updating is what causes the mechanism to

break down.

An important part of the appeal of the subgame perfect implementation approach of

Moore and Repullo (1988) is that, unlike Nash implementation, it yields a unique equilibrium.

4Of course our result leaves open the question of whether more complicated mechanisms, for example
with multiple rounds of messages or with some trembling that takes account of the correlation of signals,
might permit approximate e¢ ciency. However, these more complicated mechanisms will be less appealing
as they impose additional complexity or informational burden on the mechanism designer. We return to this
issue in Section 4.

3



It also does not require the monotonicity axiom of Maskin (1977, 1999) and thus a larger set

of social choice functions are implementable. The fragility we identify here is a consequence

of the dynamic nature of the mechanism. Of course the di¢ culty we identify is overcome by

moving back from subgame perfect implementation to Nash implementation. This, however,

comes at the cost of losing the uniqueness of equilibrium.

While this Hart-Moore-Repullo example highlights in the simplest possible setting the

fragility of subgame perfect implementation mechanisms to perturbations of the information

structure, the example is su¢ ciently simple that a 2-stage mechanism in which each player

only acts once can achieve approximate e¢ ciency, as we indicate in the last part of Section

25. However, this latter mechanism is itself not robust to small perturbations of the signal

structure. Based on this observation, in Section 3 we extend our analysis and result to 3-stage

mechanisms in a more general setting with n states of nature and transferable utility6.

In addition to the above references, our paper also relates to previous work by Cremer

and McLean (1988), Johnson, Pratt and Zeckhauser (1990), and Fudenberg, Levine and

Maskin (1991). These papers show how one can take advantage of the correlation between

agents�signals in designing incentives to approximate the Nash equilibrium under perfect

information. Unlike us, these papers consider static implementation games with commit-

ment.

The remainder of this paper is organized as follows. Section 2 illustrates our basic idea

using the simple example of Hart and Moore. We �rst present the implementation result un-

der perfect information; then we introduce (small) informational asymmetries and illustrate

our non-convergence result in that context; then we discuss the robustness of the example.

Section 3 establishes a more general non-convergence result for 3-stage mechanisms with

transferable utility, and develops an example to illustrate this result. Section 4 concludes.

5We are grateful to Andrew Postlewaite and John Moore who each provided us with such a mechanism.
6Also in the setting of the example, a mechanism with asymmetric �nes can yield truthful revelation.

But this too does not work in the general Moore-Repullo environment, as we show in Section 3.
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2 A Hart-Moore example

2.1 Setup

Consider the following simple example from Hart and Moore (2003). This example captures,

in the simplest possible setting, the logic of subgame perfect implementation mechanisms.

There are two parties, a B(uyer) and a S(eller) of a single unit of an indivisible good. If

trade occurs then B�s payo¤ is

VB = v � p;

where p is the price. S�s payo¤ is

VS = p�  ;

where  is the cost of producing the good, which we normalize to zero.

The good can be of either high or low quality. If it is high quality then B values it at

v = �v = 14; and if it is low quality then v = v = 10:

2.2 Perfect information

Suppose �rst that the quality v is observable by both parties, but not veri�able by a court.

Thus, no initial contract between the two parties can be made credibly contingent upon v:

Yet, as shown by Hart and Moore (2003), truthful revelation of v by the buyer can be

achieved through the following contract/mechanism, which includes a third party T.

1. B announces either �high�or �low�. If �high�then B pays S a price equal to 14 and

the game then stops.

2. If B announces �low�then: (a) If S does not �challenge�then B pays a price equal to

10 and the game stops.

3. If S challenges then:

(a) B pays a �ne F to T
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(b) B is o¤ered the good for 6

(c) If B accepts the good then S receives F from T (and also the 6 from B) and we

stop.

(d) If B rejects at 3b then S pays F to T

(e) B and S Nash bargain over the good and we stop.

When the true value of the good is common knowledge between B and S this mechanism

yields truth-telling as the unique equilibrium. To see this, let the true valuation v = �v = 14;

and let F = 9: If B announces �high�then B pays 14 and we stop. If, however, B announces

�low�then S will challenge because at stage 3a B pays 9 to T and, this being sunk, she will

still accept the good for 6 at stage 3b (since it is worth 14). S then receives 9+6 = 15, which

is greater than the 10 that she would receive if she didn�t challenge. Thus, if B lies, she gets

14� 9� 6 = �1, whereas she gets 14� 14 = 0 if she tells the truth. It is straightforward to

verify that truthtelling is also the unique equilibrium if v = v = 10: Any �ne greater than

8 will yield the same result.

2.3 Less than perfect information

2.3.1 Setup

Now let us introduce a small amount of noise into the setting above. Suppose that the

players have a common prior that Pr(v = 14) = Pr(v = 10) = 1=2: Each player receives an

independent draw from a signal structure with two possible signals: �0 or �00: Let the signal

structure be as follows:

�0B�
0
S �0B�

00
S �00B�

0
S �00B�

00
S

Pr(v = 14) 1
2
(1� ")2 1

2
(1� ") " 1

2
" (1� ") 1

2
"2

Pr(v = 10) 1
2
"2 1

2
(1� ") " 1

2
" (1� ") 1

2
(1� ")2
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For simplicity we will keep the payments under the mechanism the same as above and

assume that B must participate in the mechanism. We could easily adjust the payments

accordingly and assume voluntary participation.

2.3.2 Pure strategy equilibria

We �rst claim that there is no equilibrium in pure strategies in which the buyer always reports

truthfully. By way of contradiction, suppose there is such an equilibrium, and suppose that

B gets signal �0B: Then she believes that, regardless of what signal player S gets, the value

of the good is greater than 10 in expectation. So she would like to announce �low�if she

expects that subsequently to such an announcement, S will not challenge. Now, suppose B

announces low. In a fully revealing equilibrium, S will infer that B must have seen signal

�00B if she announces low. S now believes that there is a high probability that v = 10 and

therefore she will not challenge. But if S will not challenge then B would prefer to announce

�low�when she received signal �0B: Therefore there does not exist a truthfully revealing

equilibrium in pure strategies.

2.3.3 Mixed strategies and Bayesian updating

One might wonder if the truthful revelation outcome can be approximated by a mixed

equilibrium, in the way that the pure-strategy Stackelberg equilibrium can be approximated

by a mixed equilibrium of a �noisy commitment game�(van Damme and Hurkens (1997)).

We show below that this is not the case. Comparing their result with ours suggests that

the assumption of common knowledge of payo¤s is less robust to small changes than is the

assumption of perfectly observed actions.

There could, in principle, exist mixed strategy equilibria which yield approximately truth-

ful revelation as " becomes small. Proposition 1 below shows that this is not the case.

More speci�cally, suppose that conditional on observing signal �0B B announces �high�with

probability 1 � �0B and �low�with probability �
0
B; where �B 2 [0; 1]: For signal �00B , the
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corresponding mixing probabilities are denoted by �00B and 1 � �00B: These are summarized

in the following table.

High Low

�0B 1� �0B �0B

�00B �00B 1� �00B

The corresponding mixing probabilities for player S are

Challenge Don�t Challenge

�0S 1� �0S �0S

�00S �00S 1� �00S

2.3.4 The Result

Using the above payo¤ expressions, we will now show that the pure information equilibrium

whereby the buyer announces the valuation truthfully, does not obtain as a limit of any

equilibrium E" of the above imperfect information game as "! 0: More speci�cally:

Proposition 1 For any �ne F there is no sequence of equilibrium strategies �B; �S such

that �0B ! 0 and �00B ! 0:

Proof. For the sake of presentation, here we prove the Proposition under the restriction

that the challenging �ne F is �xed (equal to 9 as in the above perfect information example),

however we remove this restriction in Appendix 2 below.

Now, let us reason by way of contradiction, and suppose that "! 0; we have �0B ! 0 and

�00B ! 0: Now, let us look at the seller�s decision whether or not to challenge the buyer when

�S = �0S and the buyer announces �low�. From Appendix 1, together with (�
0
B; �

00
B)! (0; 0);

we have that

VS (Cj�S = �0S; L) = �(")[�(")(�4) + (1� �("))15]

+(1� �("))[
1

2
(�4) + 1

2
15];
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where (see Appendix)

�(") = Pr (�B = �0Bj�S = �0S; L)

=

�
1
2
(1� ")2 + 1

2
"2
�
(�0B)�

1
2
(1� ")2 + 1

2
"2
�
(�0B) + "(1� ") (1� �00B)

and

�(") = Pr (v = 10j�0B; �0S)

= 1�
1
2
(1� ")2

1
2
(1� ")2 + 1

2
"2
:

Given that (�0B; �
00
B) ! (0; 0), we thus have: �(") ! 0 and �(") ! 0 when " ! 0: This in

turn implies that as "! 0 we have

VS (Cj�S = �0S; L)!
1

2
(�4) + 1

2
15 < VS (DCj�S = �0S; L) = 10:

Thus, given (�0B; �
00
B) ! (0; 0); S does not challenge if the buyer announces �low� and

�S = �0S:

Now consider the case where �S = �00S: We have

VS (Cj�S = �00S; L) = m(")[
1

2
(�4) + 1

2
15]

+(1�m("))[n(")(�4) + (1� n("))15];

where (see Appendix)

m(") = Pr (�B = �0Bj�S = �00S; L)

=
"(1� ") (�0B)

"(1� ") (�0B) +
�
1
2
"2 + 1

2
(1� ")2

�
(1� �00B)
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and

n(") = Pr (v = 10j�0B; �00S)

= 1�
1
2
"2

1
2
"2 + 1

2
(1� ")2

:

Thus, given that (�0B; �
00
B)! (0; 0), we havem(")! 0 and n(")! 1 when "! 0: Thus again,

in the limit, challenging yields strictly less than (it yields �4) VS (DCj�S = �00S; L) = 10: It

follows that if (�0B; �
00
B) ! (0; 0); then necessarily (�0S; �

00
S) ! (1; 0) in equilibrium when

"! 0:

But now let us examine the buyers�s choice when �B = �0B: Given that (�
0
S; �

00
S)! (1; 0)

when "! 0; we have, for " su¢ ciently small:

VB (Hj�B = �0B) ' (")[�(")14 + (1� �("))10]

+(1� ("))[
1

2
14 +

1

2
10]� 14

and

VB (Lj�B = �0B) ' (")[�(")14 + (1� �("))10]

+(1� ("))[
1

2
14 +

1

2
10]� 10;

where (see Appendix)

(") =
1
2
(1� ")2 + 1

2
"2

1
2
(1� ")2 + 1

2
"2 + "(1� ")

and

�(") =
1
2
(1� ")2

1
2
(1� ")2 + 1

2
"2

both converge to one as "! 0. Thus

VB (Hj�B = �0B) < VB (Lj�B = �0B)
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as "! 0; which yields the desired contradiction and therefore establishes the result.

2.4 Discussion of the example

In appendix 2 we show that the uniform prior of p = 1=2 is essential for Proposition 1 when

the mechanism designer can choose any value of F (i.e. potentially greater than F = 9 as

in the example). If p > 1=2 (i.e. the good being high value has greater prior probability)

then in this example F can be chosen su¢ ciently large so as to induce the seller to challenge

when she observes the high signal but B announces �low�.

Similarly, even if p = 1=2; one could amend the example to include a di¤erent �ne7 at

stage 3d than the one at stage 3a (i.e. B and S pay di¤erent �nes depending on whether B

accepts the good at stage 3b). If the �ne B pays is su¢ cient large relative to F then the

conclusions of Proposition 1 do not hold (e.g. if B pays F = 30 if challenged and S pays

F = 15 if B subsequently accepts). Again, this is shown in appendix 2.

We return to both of these issues when discussing the general mechanism in the next

section. As it turns out, neither asymmetric �nes nor large �nes will lead to approximately

truthful revelation with almost perfect information in the general Moore-Repullo mechanism.

As we mentioned in the introduction, this Hart-Moore-Repullo example is su¢ ciently

simple that a 2-stage mechanism in which each player acts only once can achieve approximate

e¢ ciency.

3 A more general mechanism

3.1 From 2- to 3-stage mechanisms

So far, we have used a simple example of a 3-stage mechanism in order to highlight our driving

intuition. While this example was subject to robustness issues, the existing implementation

7We thank Ivan Werning for suggesting this possibility.
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literature suggests that these do not carry over to q-stage mechanisms with q > 2. In this

section, we provide a general result on 3-stage mechanisms with transferable utility.

More speci�cally, the results of Fudenberg, Kreps and Levine (1988) imply that sequential

equilibrium is robust to a range of perturbations if each player acts only once. Moreover,

actions that are guaranteed to be on the equilibrium path do not count for this de�nition of

�act�. For example, if each player acts 10 times, and at the �rst 9 all choices have positive

probability then we should also expect robustness. Although these results are not directly

applicable to this setting they are suggestive of a possible reason for the fragility of 3-stage

mechanisms, but not 2-stage mechanisms. The reason that they don�t apply directly is that

they are concerned with situations where one starts with a given �physical game�and then

constructs �elaborations�of it where players have private information but the same sets of

physical actions. In contrast, the setting considered here involves the mechanism designer

getting to add moves to the game once the payo¤ perturbations are decided.

The underlying cause of fragility of subgame perfect implementation results is that the

small amount of uncertainty at the interim stage, when players have observed their signals

but not yet played the game, loomed large ex post once a player has sent a message. However,

the way a player responds to a deviation from her opponent depends on how she expects her

to play subsequently. And if there is no future action from the opponent (as it is the case

in 2-stage mechanisms) then such considerations are rendered moot.

Now, 2-stage mechanisms are special in several respects. In particular, there require

strong restrictions required on the preferences of the players (Moore (1992), theorem 3.3).

Leading cases which satisfy the conditions are where only one player�s preferences are state

dependent, or where the players�preferences are perfectly correlated. For example, in the

above Hart-Moore example, only B�s preferences were state dependent, and so a 2-stage

mechanism could work. This is restrictive, including for the setting considered in Maskin and

Tirole�s irrelevance theorem. In many�if not most�incomplete contracts settings of interest

both parties preferences depend on the state and their preferences are not perfectly aligned.
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3.2 Outline of the Moore-Repullo mechanism

Moore and Repullo (1988) o¤er a class of mechanisms which, with complete information,

work well in very general environments. They also outline a substantially simpler mechanism

which yields truth telling in environments where there is transferable utility. Since this is

the most hospitable environment for subgame perfect implementation, and because most

incomplete contracting settings are in economies with money, we shall focus on it.

Let 
 be the (�nite) set of possible states of nature8. Let there be two agents: 1 and

2; whose preferences over a social decision d 2 D are given by !i 2 
i for i = 1; 2: Let


i = f!1i ; :::; !ni g : The agents have utility functions as follows:

u1 (d; !1)� t1;

u2 (d; !2) + t2

where d is a collective decision, t1 and t2 are monetary transfers. The agent�s !s are common

knowledge among each other (but not �publicly�known in the sense that the third party

introduced below does not know the agents !s).

Let f = (D;T1; T2) be a social choice function where for each (!1; !2) 2 
1� 
2 the

social decision is d = D (!1; !2) and the transfers are (t1; t2) = (T1 (!1; !2) ; T2 (!1; !2)) :

Moore and Repullo (1988) propose the following mechanism, which we shall refer to as

the MR mechanism. There is one phase for each agent and each phase consists of three

stages. The game begins with phase 1, in which agent 1 announces a value !1 as we now

outline.

1. Agent 1 announces a preference !1; and we proceed to stage 2.

8Moore and Repullo (1988) allow for an in�nite space but impose a condition bounding the utilitiy
functions which is automatically satis�ed in the �nite case.
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2. If agent 2 agrees then the phase ends and we proceed to phase 2. If agent 2 does not

agree and �challenges�by announcing some �1 6= !1; then we proceed to stage 3.

3. Agent 1 chooses between

fd; t1g = fx; tx +�g

and

fd; t1g = fy; ty +�g ;

such that

u1 (x; !i)� tx > u1 (y; !1)� ty

and

u1 (x; �1)� tx < u1 (y; �1)� ty:

Also, if agent 1 chooses fx; tx +�g ; then agent 2 receives t2 = tx � � (and a third

party receives 2�): If, however, agent 1 chooses fy; ty +�g then agent 2 receives

t2 = ty +�:

Phase 2 is the same as phase 1 with the roles of players 1 and 2 reversed, i.e. agent 2

announces a !2: We use the notation stage 1.2, for example, to refer to phase 1, stage 2.

Theorem 1 (Moore-Repullo) Suppose that the two agents� !s are common knowledge

between them, and � � 0 is su¢ ciently large. Then any f can be implemented as the

unique subgame perfect equilibrium of the MR mechanism.

The Moore-Repullo logic is as follows. If agent 1 lied at stage 1:1 then agent 2 could chal-

lenge with the truth and then at stage 1.3 agent 1 will �nd it optimal to choose fy; ty +�g :

If � is su¢ ciently large then this will be worse for agent 1 than telling the truth and having

the choice function f implemented. Moreover, agent 2 will be happy with receiving ty +�:

If agent 1 tells the truth at stage 1:1 then agent 2 will not challenge because she knows that

agent 1 will choose fx; tx +�g at stage 1.3 which will cause agent 2 to pay the �ne of �:
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3.3 Perturbing the information structure: Our main result

We now show that this result does not hold for a small perturbation of the information

structure. Consider the following information structure. For each agent�s preferences there

is a separate signal structure with n signals. For agent 1�s preferences recall that the states

are !11; :::; !
n
1 : The n signals are �

1
1; :::; �

n
1 : The conditional probability of signal �

j
1 given

state !j1 given is 1 � "; and the probability of each signal �j1 conditional on state k 6= j is

"= (n� 1) : Similarly, for agent 2�s preferences the states are !12; :::; !n2 : The n signals are

�12; :::; �
n
2 : The conditional probability of state !

j
2 given signal �

j
2 is 1�"; and the probability

of each state k 6= j conditional on signal �j2 is "= (n� 1) : The following table illustrates

this.

[TABLE 1 HERE]

The timing is as follows. Nature chooses a payo¤ parameter for each player from a

uniform distribution. Then each player simultaneously and privately observes a conditionally

independent signal from the above signal structure about player 1�s preferences. They then

play phase 1 of the MR mechanism to elicit player 1�s preferences. They then simultaneously

and privately observe a conditionally independent signal from the above signal structure

about player 2�s preferences. Then they play phase 2 of the MR mechanism to elicit player

2�s preferences9.

Denote the probability that agent 1 announces �j1 conditional on seeing signal �
k
1 as

�jk: Similarly let the probability the agent 2 announces �j (at stage 2) conditional on

observing signal �k1 be �
j
k: In the second phase of the mechanism (designed to elicit agent

2�s preferences) the corresponding mixing probabilities are as follows. The probability that

agent 2 announces �j2 conditional on seeing signal �
k
2 is �

j
k and the probability the agent 1

announces �j (at stage 2) conditional on observing signal �
k
2 is �

j
k:

9One could also imagine the players receiving both signals and then playing the two phases of the mech-
anism. This would complicate the analysis because it would expand the number of payo¤ parameters for
each player.
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Theorem 2 Suppose that the agents�beliefs are formed according to the above signal struc-

ture. Then there exists a social choice function f such that there is no pro�le of totally

mixed equilibrium strategies
�
�jk; �

j
k; �

j
k; �

j
k

	
such that �jj ! 1; �jj ! 1 and �jk ! 0; �jk ! 0

for all k 6= j:

Proof. See appendix 3.

Remark 1 If the strategies are not totally mixed then there is no guarantee that any par-

ticular �k` > 0; and hence the above expression for � (") may not be well de�ned. In other

words, Bayes Rule o¤ers no guide as to beliefs in this case. Consider, however, two sets of

beliefs in such circumstances: (i) that if no type of player 1 announces �̂1 = �k1 then such an

announcement is considered to be truthful; or (ii) that beliefs about �̂1 are uniformly distrib-

uted. In the �rst case Pr
�
�1 = �j1

�� �2 = �j2; �̂1 = �k1

�
= 0 = � (") : In the second �kj = 1=n

for all k; and therefore lim"�>0 � = 0; which is the conclusion we obtain when Bayes Rule is

applicable.

The di¢ culty which arises under almost perfect information is that player 1 can announce

a state which is not the one �suggested�by her signal and have player 2 not challenge. After

seeing the likely signal and a di¤erent announcement from player 1, player 2 believes that

there is now only a 50:50 chance that the actual state is consistent with her signal. She

then believes that if she challenges half the time she will receive the �ne of �; but half the

time she will pay it. This eliminates the role of the �ne which was crucial to the mechanism

under perfect information. This in turn allows player 1 to announce whichever signal will

lead to the best social choice function for her. If her preferences are aligned with player 2�s

then she will announce truthfully, but if not she will not. Thus, in general, not all social

choice functions can be implemented under almost perfect information.

The Hart-Moore-Repullo buyer-seller example is a simple setting in which preferences

are clearly not aligned. There are always gains from trade, so the social decision is that

there be trade. But regardless of the quality of the good, the buyer would prefer to pay
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10 for it, not 14: The seller obviously prefers to receive 14; no matter what the quality.

We suggest that such con�ict is common in the settings where Property Rights Theory has

proved useful, and therefore that 3-stage mechanisms may not lead to private information

being revealed.

Given the fact that the role of the �ne is eliminated because � is received by player 2

(say) with probability 1=2 upon challenging, but also paid with probability 1=2; one natu-

rally wonders why an asymmetric �ne (whereby player 2 pays or receives di¤erent amount

depending on the choice of player 1) works: In the example of section 2 this worked because

if B announced �high�then S had no right to challenge. In the general MR mechanism,

however, it is (necessarily) the case that player 2 can challenge any announcement that

player 1 makes. Consider modifying the MR mechanism so that the �nal part of stage 3

reads as follows: � if agent 1 chooses fx; tx +�1g ; then agent 2 receives t2 = tx � �1: If,

however, agent 1 chooses fy; ty +�2g then agent 2 receives t2 = ty + �2:� Following the

same reasoning as in the proof of Theorem 2, when player 1 announces something other than

�j1 the payo¤ as "! 0 to player 2 from challenging is now

0B@ 1
2

�
1
n

Pn
i=i u2 (y; !

i
2) + ty +�2

�
+1
2

�
1
n

Pn
i=i (u2 (x; !

i
2)) + tx ��1

�
1CA :

By making �2 large relative to �1 a challenge can be encouraged. Unfortunately this may

also make player 2 challenge player 1 when she announces truthfully, as we illustrate by

example below.

3.4 An example

We conclude this section by providing an example which illustrates two points: one, that

asymmetric �nes do not help matters, and two that there are very natural social choice

functions in simple settings which cannot be implemented in the setting with imperfect
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information10. As an illustration of this suppose that D = fN; Y g ; with the interpretation

that d = Y is the decision to provide a public good and d = N is not to provide it. Let

u1 = �1d + t1 and u2 = �2d + t2 with �i 2 f�L; �Hg for i = 1; 2 with 0 = �L < �H : The

betas have the interpretation of being the utility derived from the public good net of its

production cost. The signal structure for each player is as follows

�01�
0
2 �01�

00
2 �001�

0
2 �001�

00
2

�Hi
1
2
(1� ")2 1

2
(1� ") " 1

2
" (1� ") 1

2
"2

�Li
1
2
"2 1

2
(1� ") " 1

2
" (1� ") 1

2
(1� ")2

The social choice function we would like to implement involves d = 1 if and only if

�1+�2 > 0; with associated transfers such that �1+ t1 = �2+ t2: That is, provide the good

if and only if it has aggregate bene�t and equate payo¤s.

The �rst phase of the mechanism involves eliciting player 1�s preferences, �1: Let the

probability that agent 1 announces �L conditional on seeing signal �01 as �
0
1 and the prob-

ability that she announces �H conditional on seeing signal �001 as �
00
1: Let the probability

that agent 2 challenges be q: An equilibrium in which agent 1 truthful reveals and is not

challenged involves a sequence of strategies such that �01 ! 0; �001 ! 0 as "! 0:

The MR mechanism for this phase involves agent 1 announcing �1 and then agent 2

challenging or not by announcing �̂1 6= �1. If agent 2 does not challenge then agent 1�s

preference is deemed to be �1: If agent 2 challenges then agent 1 pays �1 to the third party

and then agent 1 chooses between the social choice functions

(d = N; tN ��1;�tN ��1) ;

and

(d = Y; tY ��1;�tY +�2) ;

10This is adapted from Bolton and Dewatripont (2005), pp558-559.
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such that

tN > �1 + tY ;

and

tN < �̂1 + tY :

Again we assume that if a challenge occurs agent 1 subsequently learns her true prefer-

ence. Suppose by way of contradiction that (�01; �
00
1) ! (0; 0) : The payo¤ to agent 2 from

challenging given that she observed signal �02 is

V2
�
Cj�2 = �02; �

L
1

�
= Pr

�
�1 = �01j�2 = �02; �

L
1

�
[K]

+
�
1� Pr

�
�1 = �01j�2 = �02; �

L
1

�� �1
2
(�tN ��1) +

1

2
(�tY +�2)

�

The calculation of Pr
�
�1 = �01j�2 = �02; �

L
1

�
is identical to the case considered in Proposition 1

(see section 5.1 of the appendix for these calculations) and hence lim"!0 Pr
�
�1 = �01j�2 = �02; �

L
1

�
=

0; given the supposition that (�01; �
00
1)! (0; 0) : This means that the value ofK is immaterial.

Thus

V2
�
Cj�2 = �02; �

L
1

�
=

1

2
(�tN ��1) +

1

2
u2 (d = 1;�tY +�2) :

=
1

2
(�tN ��1) +

1

2

�
1

2
�H � tY +�2

�
;

where the last line comes from the fact that player 2 has a 50:50 chance of being type �H :

The value to agent 2 of not challenging is

V2
�
DCj�2 = �02; �

L
1

�
=

1

2

�
�H � �H

2

�
=

1

4
�H :

since the social choice function speci�es that the project be built if player 2�s preference is

�2 = �H given that �1 = �L; agent 2 pays t2 = �H=2: This in turn happens with probability
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1=2 in a truthful equilibrium in phase 2. Thus to ensure a challenge requires

1

2
(�tN ��1) +

1

2

�
1

2
�H � tY +�2

�
>
1

4
�H ; (1)

When �2 = �002 agent 2 will not challenge an announcement of �
L
1 (the calculations are

identical to those for proposition 1 in the appendix). Thus in order to have (�02 �
00
2)! (0; 0)

we require inequality (1) to hold.

Now suppose �2 = �02 and agent 1 announces �
H
1 : The payo¤ to agent 2 from not

challenging is

V2
�
DCj�2 = �02; �

H
1

�
=

1

2

�
�H � �H � �H

2

�
� 1
2

�H
2

=
1

4
�H :

The payo¤ from challenging is

V2
�
Cj�2 = �02; �

H
1

�
= Pr

�
�1 = �01j�2 = �02; �

H
1

�
266664
Pr
�
�2 = �02j�1 = �01; �

H
1 ; C

�
(�tN ��1)

+Pr
�
�2 = �002j�1 = �01; �

H
1 ; C

�
�u2 (d = 1;�tY +�2)

377775
+
�
1� Pr

�
�1 = �01j�2 = �02; �

H
1

��
[K 0] ;

where Pr
�
�2 = �02j�1 = �01; �

H
1 ; C

�
is the posterior probability that agent 1 assigns to agent 2

having observed the high signal given that she (agent 1) saw the high signal and announced

truthfully but was challenged. The calculation of Pr
�
�1 = �01j�2 = �02; �

H
1

�
is identical to

the case considered in Proposition 1 (see section 5.1 of the appendix for these calculations)

and hence lim"!0 Pr
�
�1 = �01j�2 = �02; �

H
1

�
= 1; given the supposition that (�01; �

00
1)! (0; 0) :

This means that the value of K 0 is immaterial. Note that the calculation of agent 1�s
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posterior is identical to that in the proof of Theorem 2 and hence

lim
"!0

Pr
�
�2 = �02j�1 = �01; �

H
1 ; C

�
=
1

2
:

Thus with probability 1=2 agent 1 will choose (d = N; tN ��1;�tN ��1) and with proba-

bility 1=2 will choose (d = Y; tY ��1;�tY +�2)
11. Thus

V2
�
Cj�2 = �02; �

H
1

�
=

1

2
(�tN ��1) +

1

2
u2 (d = Y;�tY +�2)

=
1

2
(�tN ��1) +

1

2

�
1

2
�H � tY +�2

�
:

So to deter a false challenge requires

1

2
(�tN ��1) +

1

2

�
1

2
�H � tY +�2

�
<
1

4
�H ;

which contradicts (1).

4 Conclusion

In this paper, we have used a particular deviation from common knowledge�that of common

p-belief. An alternative approach would be to allow for di¤erences in beliefs about the kth

order in the hierarchy of beliefs. This is, in some sense, a more permissive perturbation

than common p-belief. The results of Weinstein and Yildiz (2007) imply that there exists a

perturbation of beliefs above the kth order�for k arbitrarily high�such that any equilibrium

in the set of interim correlated rationalizable equilibria can be �knocked out�. In other

words, without full knowledge of the complete hierarchy of beliefs one cannot make predic-

tions which are any stronger than what is implied by rationalizability. Since both subgame

11Here we assume, as in the �rst example, that in the event of a false challenge agent 1 learns the true
state at stage 3: Again, we could give here a 50:50 chance of making a take-it-or-leave-it o¤er with her
information at the time without altering the conclusion.
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perfect equilibrium and Nash equilibrium are stricter concepts than interim correlated ra-

tionalizability. the implication is that subgame perfect mechanisms are not robust to such

kth order belief perturbations; furthermore, neither is Nash implementation.

Our analysis in this paper may provide foundations for the Grossman-Hart model of

vertical integration. To see this, let us introduce a stage prior to the mechanism considered

above where the Seller has the opportunity to make an investment which increases the

probability that the good will be of high quality (i.e. that v = 14): This is in the spirit of

Che and Hausch (1999). Let S chooses investment i at cost c(i); and let the Pr(v = 14) = �i:

The �rst-best benchmark involves maximizing total surplus from this investment. That is

max
i
f�i14 + (1� �i)10� c (i)g :

The �rst-order condition is

4� = c0 (i) :

Under the mechanism considered above the Seller solves the following problem for " small

max
i

8><>: [�i(1� Pr(Ljv = �v)) + (1� �i) Pr (Hjv = v)] 14

+ [(1� �i) (1� Pr(Hjv = v)) + �iPr (Ljv = �v)] 10� c (i)

9>=>; ;

where Pr(Ljv = �v) is the asymptotic probability that the buyer announces low when getting

signal �0B and Pr(Hjv = v) is the asymptotic probability that she announces high when

getting signal �00B as "! 0:

Proposition 1 implies that at least one of these two probabilities remains bounded away

from zero as " ! 0: This in turn implies that the equilibrium investment under the above

revelation mechanism, de�ned by the �rst-order condition

4� (1� Pr(Ljv = �v)� Pr (Hjv = v)) = c0 (i) ;
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remains bounded away from the �rst-best level of investment as "! 0:

Therefore, the Seller will not invest at the �rst-best level under non-integration of the

Buyer and Seller. This is precisely in accordance with the conclusion of Grossman and Hart

(1986).
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5 Appendix 1: Bayesian updating and ex post payo¤s

Note: The following calculations are for the general case of prior probability of the good being

high value of p; as opposed to 1=2:

5.1 Preliminaries

In the derivation of posterior beliefs and ex post payo¤s, we shall make use of the fact that

B updates her beliefs about S�s signal according to:

Pr (�S = �0Sj�B = �0B) =
p(1� ")2 + (1� p)"2

p(1� ")2 + (1� p)"2 + "(1� ")
;

Pr (�S = �00Sj�B = �0B) =
"(1� ")

p(1� ")2 + (1� p)"2 + "(1� ")
;

Pr (�S = �00Sj�B = �00B) =
p"2 + (1� p)(1� ")2

p"2 + (1� p)(1� ")2 + "(1� ")
;

Pr (�S = �0Sj�B = �00B) =
" (1� ")

p"2 + (1� p)(1� ")2 + "(1� ")
;

Similarly, a type �0S seller updates her beliefs about B�s signal given her own signal and B�s

announcement, according to:

Pr (�B = �0Bj�S = �0S; L) =
(p(1� ")2 + (1� p)"2) (�0B)

(p(1� ")2 + (1� p)"2) (�0B) + "(1� ") (1� �00B)

Pr (�B = �00Bj�S = �0S; L) =
"(1� ") (1� �00B)

"(1� ") (1� �00B) + (p(1� ")2 + (1� p)"2) (�0B)
:

The conditional probabilities for a type �00S seller, are:

Pr (�B = �0Bj�S = �00S; L) =
"(1� ") (�0B)

"(1� ") (�0B) + (p"
2 + (1� p)(1� ")2) (1� �00B)

Pr (�B = �00Bj�S = �00S; L) =
(p"2 + (1� p)(1� ")2) (1� �00B)

(p"2 + (1� p)(1� ")2) (1� �00B) + "(1� ") (�0B)
:
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5.2 Buyer�s ex post payo¤s

Suppose �B = �0B: The value to B from announcing �high�when she receives signal �0B is

VB (Hj�B = �0B) = Pr (�S = �0Sj�B = �0B)

0B@ (E[vj�0B; �0S]� 14)

+ (E[vj�0B; �0S]� 14)

1CA
+Pr (�S = �00Sj�B = �0B)

0B@ �00S (E[vj�0B; �00S]� 14)

+ (1� �00S) (E[vj�0B; �00S]� 14)

1CA
=

p(1� ")2 + (1� p)"2

p(1� ")2 + (1� p)"2 + "(1� ")

0B@
�

p(1�")2
p(1�")2+(1�p)"2

�
14

+
�
1� p(1�")2

p(1�")2+(1�p)"2

�
10

1CA
+

"(1� ")

p(1� ")2 + (1� p)"2 + "(1� ")
(p14 + (1� p)10)� 14:

The value to B from announcing �low�when she receives signal �0B is

VB (Lj�B = �0B) = Pr (�S = �0Sj�B = �0B)

0BBBB@
(1� �0S)

0B@ Pr (v = 14j�0B; �0S) (14� 9� 6)

+Pr (v = 10j�0B; �0S) (10� 9� 5)

1CA
+�0S (E[vj�0B; �0S]� 10)

1CCCCA

+Pr (�S = �00Sj�B = �0B)

0BBBB@
�00S

0B@ Pr (v = 14j�0B; �00S) (14� 9� 6)

+Pr (v = 10j�0B; �00S) (10� 9� 5)

1CA
+(1� �00S) (E[vj�0B; �00S]� 10)

1CCCCA

=
p(1� ")2 + (1� p)"2

p(1� ")2 + (1� p)"2 + "(1� ")

0BBBBBBBB@
(1� �0S)

0B@
�

p(1�")2
p(1�")2+(1�p)"2

�
(14� 9� 6)

+
�
1� p(1�")2

p(1�")2+(1�p)"2

�
(10� 9� 5)

1CA
+�0S

0B@
�

p(1�")2
p(1�")2+(1�p)"2

�
14

+
�
1� p(1�")2

p(1�")2+(1�p)"2

�
10� 10

1CA

1CCCCCCCCA
+

"(1� ")

p(1� ")2 + (1� p)"2 + "(1� ")

0B@ �00S (p(14� 9� 6) + (1� p)(10� 9� 5))

+ (1� �00S) (p14 + (1� p)10� 10)

1CA :
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To see where the payo¤s come from recall that if B announces �high�then the mechanism

speci�es that she gets the good for 14: If she announces low and S does not challenge she

gets the good for 10: If S does challenge then we assume that the true state of the good is

revealed to both parties and we are therefore back in the complete information setting12.

When �B = �00B we have

VB (Hj�B = �00B) = Pr (�S = �0Sj�B = �00B)

0B@ E[vj�00B; �0S]� 14

+E[vj�00B; �0S]� 14

1CA
+Pr (�S = �00Sj�B = �00B)

0B@ E[vj�00B; �00S]� 14

+E[vj�00B; �00S]� 14

1CA
=

" (1� ")

p"2 + (1� p)(1� ")2 + "(1� ")
(p14 + (1� p)10)

+
p"2 + (1� p)(1� ")2

p"2 + (1� p)(1� ")2 + "(1� ")
(p14 + (1� p)10)� 14;

12This could be modi�ed so that at the bargaining stage�in the spirit of Myerson (1984)�each player has
a 50% chance of making a take-it-or-leave-it o¤er, using the information she has at that time. If B gets to
make the o¤er she always o¤ers zero, and if S gets to make the o¤er she o¤ers a price equal to the posterior
expectation of the value of the good conditional on her signal �S :
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and

VB (Lj�B = �00B) = Pr (�S = �0Sj�B = �00B)

0BBBB@
(1� �0S)

0B@ Pr (v = 14j�00B; �0S) (14� 9� 6)

+Pr (v = 10j�00B; �0S) (10� 9� 5)

1CA
+�0SE[vj�00B; �0S]� 10

1CCCCA

+Pr (�S = �00Sj�B = �00B)

0BBBB@
�00S

0B@ Pr (v = 14j�00B; �00S) (14� 9� 6)

+Pr (v = 10j�00B; �00S) (10� 9� 5)

1CA
+(1� �00S)E[vj�00B; �00S]� 10

1CCCCA
=

" (1� ")

p"2 + (1� p)(1� ")2 + "(1� ")

0B@ (1� �0S) (p(14� 9� 6) + (1� p)(10� 9� 5))

+�0S (p14 + (1� p) 10)� 10

1CA

+
p"2 + (1� p)(1� ")2

p"2 + (1� p)(1� ")2 + "(1� ")

0BBBBBBBB@
�00S

0B@
�

p"2

p"2+(1�p)(1�")2

�
(14� 9� 6)

+
�
1� p"2

p"2+(1�p)(1�")2

�
(10� 9� 5

1CA
+(1� �00S)

0B@
�

p"2

p"2+(1�p)(1�")2

�
14

+
�
1� p"2

p"2+(1�p)(1�")2

�
1CA 10

1CCCCCCCCA
:

5.3 Seller�s ex post payo¤s

The payo¤ to player S conditional on �S = �0S and B announcing �high�is

VS (�S = �0S; H) = VS (�S = �00S; H) = 14:

since the mechanism speci�es that B gets the good for 14 when she announces �high�.

The payo¤ for player S conditional on challenging when �S = �0S and B announcing �low�
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is

VS (Cj�S = �0S; L) = Pr (�B = �0Bj�S = �0S; L)

0B@
0B@ Pr (v = 10j�0B; �0S) (5� 9)

+Pr (v = 14j�0B; �0S) (9 + 6)

1CA
1CA

+Pr (�B = �00Bj�S = �0S; L)

0B@
0B@ Pr (v = 10j�00B; �0S) (5� 9)

+Pr (v = 14j�00B; �0S) (9 + 6)

1CA
1CA

=
(p(1� ")2 + (1� p)"2) (�0B)

(p(1� ")2 + (1� p)"2) (�0B) + "(1� ") (1� �00B)

0B@
0B@
�
1� p(1�")2

p(1�")2+(1�p)"2

�
(5� 9)

+
�

p(1�")2
p(1�")2+(1�p)"2

�
(9 + 6)

1CA
1CA

+
"(1� ") (1� �00B)

"(1� ") (1� �00B) + (p(1� ")2 + (1� p)"2) (�0B)
(((1� p) (5� 9) + p (9 + 6))) :

The payo¤ for player S conditional on not challenging when �S = �0S and B announcing

�low�is

VS (DCj�S = �0S; L) = Pr (�B = �0Bj�S = �0S; L) (10) + Pr (�B = �00Bj�S = �0S; L) (10)

=
(p(1� ")2 + (1� p)"2) (�0B)

(p(1� ")2 + (1� p)"2) (�0B) + "(1� ") (1� �00B)
10

+
"(1� ") (1� �00B)

"(1� ") (1� �00B) + (p(1� ")2 + (1� p)"2) (�0B)
10:

The payo¤ for player S conditional on challenging when �S = �00S and B announces �low�

is
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VS (Cj�S = �00S; L) = Pr (�B = �0Bj�S = �00S; L)

0B@
0B@ Pr (v = 10j�0B; �00S) (5� 9)

+Pr (v = 14j�0B; �00S) (9 + 6)

1CA
1CA

+Pr (�B = �00Bj�S = �00S; L)

0B@
0B@ Pr (v = 10j�00B; �00S) (5� 9)

+Pr (v = 14j�00B; �00S) (9 + 6)

1CA
1CA

=
"(1� ") (�0B)

"(1� ") (�0B) + (p"
2 + (1� p)(1� ")2) (1� �00B)

(((1� p) (5� 9) + p (9 + 6)))

+
(p"2 + (1� p)(1� ")2) (1� �00B)

(p"2 + (1� p)(1� ")2) (1� �00B) + "(1� ") (�0B)

0B@
0B@
�
1� p"2

p"2+(1�p)(1�")2

�
(5� 9)

+
�

p"2

p"2+(1�p)(1�")2

�
(9 + 6)

1CA
1CA :

The payo¤ for player S conditional on not challenging when �S = �00S and B announces �low�

is

VS (DCj�S = �00S; L) = Pr (�B = �0Bj�S = �00S; L) (10) + Pr (�B = �00Bj�S = �00S; L) (10)

=
"(1� ") (�0B)

"(1� ") (�0B) + (p"
2 + (1� p)(1� ")2) (1� �00B)

10

+
(p"2 + (1� p)(1� ")2) (1� �00B)

(p"2 + (1� p)(1� ")2) (1� �00B) + "(1� ") (�0B)
10:

6 Appendix 2: Proposition 1 for general �nes

In the proof of Proposition 1 presented in the text, we restricted the �ne F to be equal to 9:

Now, we shall remove that restriction and allow for any �ne F:We shall also allow the price

at which B is o¤ered the good after a challenge from S to be P; rather than simply 6: Note

that S�s valuations when the �ne is F are

VS (Cj�S = �0S; L) = �(")[�(")(5� F ) + (1� �("))(6 + F )]

+(1� �("))[(1� p)(5� F ) + (6 + F )p];
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and

VS (Cj�S = �00S; L) = m(")[(1� p)(5� F ) + p(6 + F )]

+(1�m("))[n(")(5� F ) + (1� n("))(6 + F )];

where �("); �(");m("); n(") are the same ex post probabilities as above.

Thus, as "! 0 we have:

VS (Cj�S = �0S; L)! (1� p)(5� F ) + (6 + F )p:

For F su¢ ciently small, VS (Cj�S = �0S; L) < VS (DCj�S = �0S; L) = 10: For p = 1=2 this

conclusion is independent of F and Proposition 1 holds.

If p > 1=2 then if F is large enough then VS (Cj�S = �0S; L) > VS (DCj�S = �0S; L) : The

critical value of F for which the seller is indi¤erent between challenging and not challenging

given �S = �0S and B announcing �low�, is given by:

�F =
5� p

2p� 1 :

Whenever F > �F ; S will challenge conditional on �S = �0S and B announcing �low�. But as

"! 0 we also have

VS (Cj�S = �00S; L)! (5� F );

which, for F > �F ; is smaller than the seller�s payo¤ from not challenging, namely 10. So for

F > �F S will only challenge when she receives signal �0S: Thus when p > 1=2 there exists

an F such that (�0B; �
00
B)! (0; 0) :

If p = 1=2 but the �nes at stages 3a and 3d are di¤erent then there exist F1; F2 such that

(�0B; �
00
B)! (0; 0) : In such a case we have, as "! 0

VS (Cj�S = �0S; L)! (1� 1
2
)(5� F1) + (6 + F2)

1

2
:
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Thus if F2 is su¢ ciently large relative to F1 then (�0S; �
00
S)! (0; 0) ; since

VS (Cj�S = �00S; L)! (5� F1):

7 Appendix 3: Proof of Theorem 2

Suppose by way of contradiction that "! 0; we have �jj ! 1 and �jj ! 1:Now consider player

2�s decision whether or not to challenge at stage 1.2, when player 1 announces something

other than �j1: By Bayes Rule, player 2�s posterior belief that player 1 saw signal �
j
1 given

that player 2 saw signal �j1 and that player 1 announced something other than �
j
1 is

� (") � Pr
�
�1 = �j1

�� �2 = �j2; �̂1 = �k1

�
=
Pr
�
�1 = �j1; �2 = �j2; �̂1 = �k1

�
Pr
�
�2 = �j2; �̂1 = �k1

�
=

Pr
�
!̂1 = !k1

�� �1 = �j1; �2 = �j2
�
Pr
�
�1 = �j1; �2 = �j2

�Pn
`=1 Pr

�
!̂1 = !k1

�� �2 = �j2; �1 = �`1
�
Pr
�
�1 = �`1; �2 = �j2

�
=

Pr
�
!̂1 = !k1

�� �1 = �j1; �2 = �j2
�
Pr
�
�1 = �j1; �2 = �j2

�Pn
`=1 Pr

�
!̂1 = !k1

�� �2 = �j2; �1 = �`1
�
Pr
�
�1 = �`1; �2 = �j2

�
=

�kj Pr
�
�1 = �j1; �2 = �j2

�Pn
`=1 Pr

�
!̂1 = !k1

�� �2 = �j2; �1 = �`1
�
Pr
�
�1 = �`1; �2 = �j2

�
=

�kj Pr
�
�1 = �j1; �2 = �j2

�Pn
`=1 Pr

�
!̂1 = !k1

�� �1 = �`1
�
Pr
�
�1 = �`1; �2 = �j2

�
=

�kj

h
1
n

�
(1� ")2 + (n� 1)

�
"

n�1
�2�i

�kj

h
1
n

�
(1� ")2 + (n� 1)

�
"

n�1
�2�i

+
P

` 6=j �
k
`

h
1
n

�
(1� ") "

n�1 +
"

n�1 (1� ") + (n� 2)
�

"
n�1
�2�i

:
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Also, let

�k (") = Pr
�
!1 = !k1j�1 = �j1; �2 = �j2

�
; for k 6= j

= 1� (1� ")2

(1� ")2 + (n� 1) "2

(n�1)2
:

Finally let � (") =
P

k 6=j �k (") : Note that if player 1 indeed saw signal �
j
1 then at stage

1.3 with probability 1� � (") she will choose fy; ty +�g and with probability � (") she will

choose fx; tx +�g : Under the former choice player 2 receives a transfer of ty+� and under

the latter choice she receives a transfer of tx ��:

The payo¤ to player 2 from challenging is therefore

V C
2 = � (")

264 � (")
�
1
n

Pn
i=m (u2 (x; !

m
2 )) + tx ��

�
+
�
1� � (")

�
1
n

Pn
i=m u2 (y; !

m
2 ) + ty +�

��
375

+
X
z 6=j

Pr
�
�1 = �z1j�2 = �j2; �̂1 = �k1

�

�

0B@ Pr
�
!1 = !z1j�1 = �z1; �2 = �j2

� �
1
n

Pn
i=1 u2 (y; !

i
2) + ty +�

�
+
�
1� Pr

�
!1 = !z1j�1 = �z1; �2 = �j2

�� �
1
n

Pn
i=1 (u2 (x; !

i
2)) + tx ��

�
1CA

Note that as "! 0; � (")! 1; and that given the supposition that �jj ! 1 as "! 0 we

have � (")! 0 as "! 0: Furthermore

Pr
�
!1 = !z1j �1 = �z1; �2 = �j2

�
=

Pr
�
�1 = �z1; �2 = �j2; !1 = !z1

�
Pr
�
�1 = �z1; �2 = �j2

�
=

Pr
�
�1 = �z1; �2 = �j2

��!1 = !z1
�
Pr (!1 = !z1)

Pr
�
�1 = �z1; �2 = �j2

�
=

1
n
(1� ") "

n�1
1
n

�
2 (1� ") "

n�1 + (n� 2)
�

"
n�1
�2�

=
1� "

2 (1� ") + n�2
n�1"

;
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where the third equality holds by conditional independence of �1 and �2; and the fourth

equality is derived as follows.

Pr
�
�1 = �z1; �2 = �j2

�
=

nX
k=1

Pr
�
�1 = �z1; �2 = �j2

��!1 = !k1
�
Pr
�
!1 = !k1

�
=

1

n

nX
k=1

Pr
�
�1 = �z1j!1 = !k1

�
Pr
�
�2 = �j2

��!1 = !k1
�

=
1

n

0B@ P
k2f`;jg Pr

�
�1 = �z1j!1 = !k1

�
Pr
�
�2 = �j2

��!1 = !k1
�

+
P

k 62f`;jg Pr
�
�1 = �z1j!1 = !k1

�
Pr
�
�2 = �j2

��!1 = !k1
�
1CA

=
1

n

 
(1� ")

"

n� 1 +
"

n� 1 (1� ") + (n� 2)
�

"

n� 1

�2!

=
1

n

 
2 (1� ")

"

n� 1 + (n� 2)
�

"

n� 1

�2!
;

so that

lim
"!0

Pr
�
!1 = !z1j �1 = �z1; �2 = �j2

�
= lim

"!0

1� "

2 (1� ") + n�2
n�1"

=
1

2
.

Therefore the payo¤ as "! 0 to player 2 from challenging is

0B@ 1
2

�
1
n

Pn
i=i u2 (y; !

i
2) + ty +�

�
+1
2

�
1
n

Pn
i=i (u2 (x; !

i
2)) + tx ��

�
1CA :

Note that the �s cancel out which means we can no longer conclude that player 2 will be

willing to challenge for all social choice functions f: That is, there exists an f such that the

payo¤ from challenging is smaller than the payo¤ from not challenging, that being

1

n

nX
i=1

�
u2
�
D
�
!̂1; !

i
2

�
; !i2
�
+ t2

�
:

Thus, player 2 will not necessarily challenge if she sees signal �j2 and player 1 announces

!k1; k 6= j:

Now consider other signals that player 2 could observe. Note that by the construction
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of the signal structure

Pr
�
�1 = �j1j�2 = �k2; �̂1 = �k1

�
; k 6= j =

1

n� 1 Pr
�
�1 = �j1j�2 6= �j2; !̂1 = !k1

�
;

which goes to zero as " ! 0: Applying the same reasoning as above player 2 will not

challenge in this case either.

Now let us consider player 1�s choice when �1 = �j1: Given that player 2 will not challenge

when "! 0; we have for " su¢ ciently small that the payo¤ to announcing �̂1 = �j1 is

V j
1 =

1

n

 
nX
i=1

u1
�
D
�
!j1; !

i
2

�
; !i2
�
� tj1

!
:

The payo¤ to announcing some other state �̂1 = �k1; k 6= j is

V k
1 =

1

n

 
nX
i=i

u1
�
D
�
!k1; !

i
2

�
; !i2
�
� tk1

!
:

But there clearly exist social choice functions f = (D;T1; T2) such that V k
1 > V j

1 ; and without

further restrictions on preferences we cannot rule out that these social choice functions also

lead player 2 not to challenge at stage 1:2:

Identical reasoning establishes a contradiction for �jj ! 1 and �jk ! 0 for all k 6= j in

phase 2 of the mechanism where the players�roles are reversed.

This establishes the result.
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