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Abstract

Gordon and Smith (2004) do a great service by introducing innovative and
creative quantitative methods that incorporate information from qualita-
tive sources. It is nevertheless important to examine the conditions under
which the proposed estimators will be useful in practice. These condi-
tions prove to be surprisingly restrictive: virtually all of the cases of
discernible causation must be coded as such, those codings must contain
virtually no errors, and the process by which qualitative researchers pro-
duce evaluations of discernibility must conform to the authors’ model of
the qualitative data-generating process (QDGP) if the procedures are to
retain any comparative advantage.

*The authors are grateful to Kevin Clarke, Sarah Croco, Brian Gaines, Gary Goertz, Sandy
Gordon, Beth Simmons, Alastair Smith, Martin Steinwand, Tze Kwang Teo, and especially
Kevin Quinn for comments on earlier drafts.



1 Introduction

In the twenty-five years since Poirier (1980) introduced the concept of partial
observability in bivariate probit models, little has been done to address the dis-
crepancy between the technique, which assumes that we know nothing about
which causal mechanism is responsible for the realization of the dependent vari-
able, and the reality, in which sometimes we do. Gordon and Smith (2004) do
a great service by thinking through innovative methods, throbit and trubit, for
incorporating additional information about causation from qualitative sources.
This goal is a valuable one because, as the authors correctly point out, partial
observability techniques are generally starved for information (2004, 234). For
that reason, Gordon and Smith’s article should be seen as a thoughtful solution
to a long-standing problem of considerable importance.

However, it is crucial to highlight the conditions under which the general
approach suggested by Gordon and Smith will prove useful. As we demonstrate
below, these turn out to be rather restrictive. In particular, their approach rests
on three key assumptions:

1. No underreporting: All events with discernible causes are in fact dis-
cerned and coded as such by experts.

2. No coding error: Expert coding of discernible causes contains no errors.

3. Qualitative data-generating process correctly modeled: Experts’
judgments about the discernibility of causes are directly related to the
values of the latent dependent variables: the conclusion that the cause is
discernible is reached if, and only if, the value of only one of those variables
exceeds a certain threshold.

We argue below that, in practice, these assumptions are likely to be violated;
indeed, violation of the first two is nearly unavoidable, and it may be impossible
to know whether the third condition is ever met.

In order to assess the extent to which violations of these assumptions is
problematic, we run Monte Carlo simulations. First, the simulations suggest
that, even under ideal conditions, i.e., when none of the assumptions is violated,
the performance of trubit is no better (and is typically slightly worse) than that
of the authors’ baseline estimator, Boolean probit (Poirier 1980; Braumoeller
2003), which utilizes no qualitative information at all. Throbit, on the other
hand, does outperform Boolean probit, but only if all assumptions are met: if
any of the three is violated even trivially, substantial parameter inconsistency
results and gains in efficiency are forfeited. Trubit is more robust (though not
perfectly robust) to violations of the first and third assumptions than is throbit,
while both are quite vulnerable to violations of the second assumption (coding
error).



2 The Approach

Gordon and Smith’s contribution to the literature on partial observability tech-
niques lies in their approach to leveraging “qualitative information for quanti-
tative inference”:

We propose two methods to overcome the problems of identification
and labeling inherent in the partial observability context. ... Although
for this class of problems information on which causal mechanism is
responsible for an event is generally censored, we can occasionally
discern that a cause was operative. Even if these instances are few
and far between, we can use them as ‘anchors’ to greatly reduce the
identification and labeling problems. (Gordon and Smith 2004, 239)

The information that the authors refer to would come from historians or
other experts and would be generated as follows. Gordon and Smith posit
that one of two or more mechanisms hypothesized to lead to an event ¥ =
1 is “discernible”—meaning that it will generate an expert claim, based on
qualitative data, that the mechanism in question was the one responsible for the
observation—if and only if the value of the latent dependent variable associated
with this mechanism exceeds a certain threshold and is the only one to do so. If
the values of several latent dependent variables associated with different causal
mechanisms exceed their thresholds, or if none does, experts either remain silent
or disagree on the causes of the event, and no coding is generated.

A simple analogy might be helpful. Imagine that a coroner is asked to assess
the cause of death for a man who was known to have been a heavy smoker and
drinker. If the coroner finds cirrhosis of the liver, advanced beyond a certain
point, and little or no lung cancer, he will blame alcohol for the man’s death.
Conversely, advanced lung cancer and no cirrhosis would implicate cigarettes.
Both lung cancer and cirrhosis, or neither of the two, would leave the coroner
unable to adjudicate between the two causes.

The idea behind the procedure is that large-N researchers resemble bio-
statisticians who relate alcohol and cigarette intake to mortality in general, and
case-study researchers (or historians) resemble coroners who evaluate the cause
of death in particular cases. The goal is to incorporate the “coroners’ ” informa-
tion into the “biostatisticians’ ” analysis in order to sharpen inferences about
the causes of “mortality.” That is, Gordon and Smith make use of information
generated by qualitative experts to improve on simple partial-observability es-
timates of the coefficients that relate independent variables of interest to their
associated dependent variables. (The model is formally restated in Section 3.)

Gordon and Smith focus exclusively on “substitutable” causation (e.g., X
or Xs is responsible for event Y = 1, as in the example above), though they
note that “the problem is isomorphic to one involving the conjunction of two
causes (X7 and X3)” (Gordon and Smith 2004, 238). Although their claim
is mathematically correct, the two problems are substantively quite different,
and the applicability of their procedures to the latter case merits brief discus-
sion. In the case of conjunctural causation, in which two causal mechanisms



produce a given event only in combination, it makes no sense to look at stud-
ies examining events (Y = 1) in order to label one or the other mechanism
a “discernible cause”—both causes are present, so both underlying dependent
variables exceeded their thresholds.! Instead, non-events (Y = 0) need to be
examined, and expert judgments on which cause of the non-event was “discern-
ably” present would need to be collected. The difficulty of getting qualitative
data pertaining to non-events is daunting. One need only imagine trying to
find a detailed analysis of the reasons why the United States did not request
an IMF loan in every year during which it failed to do so to comprehend the
magnitude of the problem. While some notable non-events have been studied in
depth (e.g. intermissions in great-power conflict in the nineteenth and second
half of the twentieth centuries), most simply are not.? This article will focus on
substitutable causation to ensure full comparability with Gordon and Smith’s
arguments, but it is worth keeping this caveat in mind.

3 Method

To evaluate the robustness of this approach, we ran a series of Monte Carlo
simulations. We chose the following parameters: 1,000 datasets, with 1,000
observations each, were created and analyzed for each simulation. Following
the authors’ procedures (which they were kind enough to provide in the form
of GAUSS and Stata batch files), the exogenous variables (X) and the two
uncorrelated error terms (¢) were drawn from a Normal(0,1) distribution; a
constant was then subtracted from X; and X5 to provide a more balanced
distribution of Y.> The model was taken directly from Gordon and Smith
(2004, 242):

Yii = B+ BeXei+ B3 Xy +eui (1)

Yy, = Bat B5Xei + BeXoi +e2i (2)
- 1 if max (Y75, Y5) >0

Yo = { 0 otherwise (3)

—where X, is an independent variable common to both “paths” and X; and X5
are unique to Y7* and Y5", respectively. Again following the authors’ procedures,

1Or, rather, they clearly failed to exceed the thresholds of “absence” that would have
produced a non-event.

2The growing literature on necessary conditions (Dion 1998; Braumoeller and Goertz 2000;
Goertz and Starr 2002) is a notable exception: one of the main predictions to arise from
necessary condition theories is that events will fail to occur when the condition in question is
absent.

3In the simulation that was sent to us, the constant was 3.77; we found that 2.5 worked
just as well if not better, providing a nearly 1:1 ratio of ¥; = 1 to Y; = 0 cases in most
datasets. The goal in seeking a balance between 1s and 0s was to ensure that the results are
not polluted by the well-known parameter inconsistencies that plague all probit analyses in
rare-events settings.



all parameters () were set to 1 and the dependent variable was generated.
Finally, two variables representing qualitative evaluations were created:

o 1ifY1>§>T1 andY2*i<7'2

Qu = { 0 otherwise (4)
o 1Yy, >mand Y7 <7y

Qai = { 0 otherwise (5)

It is worth noting, for the later discussion of the QDGP, that this is a rather
strict requirement: a mechanism j is deemed discernible at Y; = 7; + 0.01 and
not discernible at Y; = 7; —0.01. As in the original simulations, 7 and 7 were
both set to 0.53.4

The throbit likelihood function can be found in Gordon and Smith (2004,
240). The intuition behind it is complex but ultimately quite elegant: four
different probabilities (the probability of a nonevent, the probability of an event
arising discernibly from path 1, the probability of an event arising discernibly
from path 2, and the probability of an event occurring but not being discernible)
are calculated in such a way that they constitute different regions of a bivariate
normal curve. In essence, the 7 parameters are used as the intersections of these
regions—the points at which they are connected to form a single density. The
authors’ Figure 2 provides the graphical intuition.

Likelihood functions derived from trubit, a Bayesian technique, were not
presented in the original paper. Following the lead of the authors, who tested
an ML version in their own Monte Carlos but did not present the results (fn. 20),
we constructed them based both on the contents of their article and the code that
they were kind enough to provide. Which likelihood to use depends critically
on what we believe about the non-discernible cause: the authors distinguish
between situations in which “[mechanism] 1 (and explicitly not [mechanism] 2)
is responsible for causing success in a particular observation” and those in which
“mechanism 1 causes the success but mechanism 2 cannot be ruled out.” (247)°
The two situations imply different truncations in the Bayesian model, which
translate into different likelihood functions in the ML version. To be clear, we
distinguish between trubit-c (in which we are certain that mechanism 2 did not
cause success) and trubit-u (in which we are uncertain).%

4In terms of the earlier analogy, Y measures mortality, the Xs measure cigarette and
alcohol consumption, Y;* and Y5 represent the extent to which cirrhosis and lung cancer have
advanced, and 7 represents the point beyond which the disease is considered advanced enough
to have been fatal.

5The omitted words in the original of the first quote were “cause.” As the authors seem
to have intended the same thing in both passages, we have modified their wording slightly to
avoid misunderstanding.

6Reasonable people may differ regarding which of the two variants is most appropriate to
the situation described above. The authors’ Monte Carlo code indicates that they utilized
trubit-u in their simulations. The story behind the data-generating process—that an expert
claim will be generated only if the value of one latent variable is high and the value of the
other is low—Ilead us to believe that trubit-c is equally if not more appropriate to the task at
hand. We therefore provide results for both variants.
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Analogous to the authors’ definitions for the throbit likelihood (2004: 240),
let 6;; = 1 if mechanism j is a discernable cause, and zero otherwise. Constrain-
ing p, the correlation between the error terms, to zero, the trubit-u likelihood
function is constructed from the underlying probabilities:

PrY;=0) = (1-®(X1b1))(1 - ®(X22)) (6

Pr(Y;=1,01;,=102;=0) = 1—Pr(Y;=0) (7
Pr(Y; = 1,61 = 1,8 = 0) P(X1,61) (8
Pr(Y;=1,61=0,0=1) = ®(Xy), (9

= O — T

where ®(-) is a cumulative Normal distribution. The trubit-c likelihood
function is similar, save that equations (8) and (9) are replaced by

Pr(Y;=1,01,=1,00,=0) = ®(X1;61)(1 — ®(X202)) (10)
Pr(Y;=1,01,=0,00;, =1) = (1 —®(X1;01))P(X2:02) (11)

Once the data had been generated, they were analyzed with Boolean probit,
throbit, and both ML trubit estimators. The goal was to evaluate the properties
of the latter three estimators,” both under ideal conditions and in the case in
which one of the three assumptions described below is violated.®

4 Assumptions

This section will describe the three conditions that must hold for this to be a
viable approach. For each of the three, we explain why the approach requires
these conditions to perform well and argue that these conditions are either rarely
met in reality (in the case of the first two) or are impossible to verify (in the
case of the third).

4.1 The Quantity of Qualitative Data: Underreporting

Qualitative judgments about which cause of an event is discernible come mostly
from case studies conducted by experts in a particular academic field or by
area specialists. Gordon and Smith note that “[unfortunately, such qualitative
evidence is rarely available for all cases in a sample” (2004: 239). They proceed
to ask: “even if such examples in which causes are revealed are few and far
between, can we exploit that information in our large-N analysis?” (2004: 239).

"Boolean probit does not utilize the qualitative information that is brought to bear in both
throbit and trubit, so it is robust to violations of these three assumptions by definition.

8The simulations were carried out in R, version 1.9.0. For Boolean probit simulations, the
boolean package, version 1.04, was utilized. For throbit and trubit simulations, the GAUSS
and Stata procedures utilized by the authors were translated into R to ensure comparability
of results.



Their Monte Carlo studies demonstrate, clearly, that in the case of throbit the
answer to this question is “yes.”

The Monte Carlo simulations in the original article assume that every in-
stance of a discernible cause will generate a report from a qualitative judge.
Problems do not arise when events with discernible causes constitute a small
proportion of relevant events. But—and this is a key distinction—they do arise
when only a subset of the events that have discernible causes are actually coded
by the experts. We refer to this phenomenon as “underreporting.”

Because throbit’s dimensions are essentially ordered probits (with some ex-
ceptions, as noted by the authors in their footnote 11) in which failure is coded
as a 0, ambiguous success is coded as a 1, and success due to a discernible
cause is coded as a 2, underreporting is not innocuous: rather, it is equivalent
to coding a 1 rather than a 2 on one of the two dimensions. Accordingly, if
all events with discernible causes are not coded as such by qualitative judges,
the result is nonrandom error in the dependent variable—nonrandom because of
the systematic conversion of 2s into 1s. In short, in this particular application,
missing data produces inconsistency in coefficient estimates. Further, we cannot
know how substantial this inconsistency is, as we cannot know what percentage
of discernible causes have been identified.

As we will show below, if one is to exploit qualitative information effectively
using throbit, virtually all Y = 1 events in question must be examined by
experts, and opinions about the presence or absence of a discernible cause must
be rendered in each case. Such structured abundance of qualitative evidence
is rarely available for large-N analyses. For example, Gordon and Smith write
the following about the source of their qualitative data: “for a limited number
of cases Vreeland (2003) is able to differentiate between events where Yi; =
1 and those where Y5, = 17 (where Y7; and Ys; represent competing causal
paths). “For the majority of cases this information is censored” (2004, 239).
Underreporting is the norm: experts seldom produce, or even aim at producing,
qualitative judgments about the whole universe of relevant events. Instead, their
choice of case studies is dictated by how representative, important, or interesting
they are. A quest for qualitative data on the causes of war, for instance, will
produce more than enough case studies of World War I, but hardly any of the
1850s war between Brazil and Argentina—not because no cause of the latter
event was discernible, but simply because the former event is more prominent.

4.1.1 Results

To simulate the effects of incomplete qualitative data on discernible causes, we
drew a random number from a uniform distribution on the unit interval for
each observation and coded @)q; = 0 if that number exceeded some fraction =;
we then did the same for (J9;. Varying v permitted us to control the probability
that a “discernible cause” as understood by throbit and trubit would be coded
as such by the simulated qualitative judges. Tables 1 and 2 show the results.
As shown in Table 1, under ideal conditions throbit coefficients are on av-
erage less biased than Boolean probit coefficients, a result that reconfirms the



authors’ original findings. The table also shows, however, that throbit’s loss of
efficiency relative to Boolean probit is substantial if even a relatively small per-
centage of discernible-cause cases fail to generate reports. Figure 1 illustrates
the density of the parameter estimates when 50% of the discernible causes have
generated expert claims that have been coded by the researcher: even under
these relatively favorable conditions, the bias of the estimator is evident.

Table 2 and 3, on the other hand, call into question trubit’s performance
relative to Boolean probit even under ideal conditions: both sets of estimates
exhibit some bias, but the upward bias in trubit-u’s coefficients is substantially
more pronounced than is the bias in Boolean probit’s. Worse, the trubit-c
coeflicients on the “common” variable X;, Bg and Bg,, exhibit severe attenuation.
These results are illustrated in Figure 2. The tables do demonstrate, however,
that both variants of trubit perform much better than throbit when qualitative
data suffers from underreporting.

The tables also contain information on coverage—the percentage of cases in
which the 95% confidence interval covers the true population parameter. This
figure is arguably of more interest to practitioners, as it reflects the ability of the
test to reject (or fail to reject) a hypothesized parameter value correctly. With
all discernible causes coded as such, throbit’s coverage is, on average, nearly
identical to Boolean probit’s—95.6%, a slightly above-average performance for
both. With 90% of definitive causes coded as such, average coverage drops
to 94.5%. With only 50% of discernible causes coded as such, coverage drops
to 80% on average. With all discernible causes coded as such and no coding
error—that is, under ideal conditions—, trubit’s coverage is, on average, 92.4%.

Though we restricted ourselves to simulations in which N = 1,000, it is
worth emphasizing that the coverage problem becomes worse as N increases
and the distribution of coefficients narrows accordingly. To illustrate this point,
we ran a throbit simulation with v = 0.8 and N = 10,000. While the mean
coefficients were similar to those reported in Table 1, throbit’s coverage dropped
from an average of 93.47% to an average of 76.85%. Unlike disparities in ef-
ficiency, therefore, which can be mitigated by larger quantities of data, these
disparities in coverage are only exacerbated by it.

The authors note in the abstract that “by anchoring ‘discernible’ causes for
a handful of cases about which we possess qualitative information, we obtain
greater efficiency.” Clearly, the advantages in both efficiency and coverage de-
pend on anchoring discernible causes for not just a handful but nearly all of
the cases in question in which causes are discernible, at least when throbit is
used. Even more daunting is the fact that one cannot know what percentage of
discernible causes have been coded without coding, at a minimum, every case
in which ¥; = 1.7

9Gordon and Smith assume that no qualitative judgments are ever rendered for nonevents.
One might reasonably question this assumption—to take a straightforward example, “rally
‘round the flag” effects could easily produce a crisis that does not escalate to war, and the
path to war could be coded even though the war itself did not occur.



4.2 The Quality of Qualitative Data: Coding Error

History teaches us time and time again that what experts once thought to be
true later turned out to be false or disputed. As one reviewer put it when dis-
cussing John Lewis Gaddis’ “We Now Know” (Gaddis 1997), a book updating
our understanding of the Cold War based on new archival sources, “Mr. Gaddis
might have called his book “What I Now Think’.” (McMillan 1997, 20) If histo-
rians continue to change their minds and disagree on the causes of such large and
salient events as the end of the Cold War, then, surely, less well-documented and
more obscure events could produce some questionable evaluations on the part of
single qualitative judges—or even questionable consensus on the part of multiple
judges, as the fluctuation from traditional to revisionist to “post-revisionist” to
corporatist schools of thought on the sources of American foreign policy demon-
strates.!Y It is therefore worth evaluating the robustness of the approach to
errors in qualitative evaluations, or more succinctly, “coding error.”'' Perhaps
not surprisingly, the results below show that such errors, which by virtue of the
logic of throbit and trubit are hardwired into the latent dependent variables,
can make them produce coeflicients that are severely asymptotically biased.

Unfortunately, qualitative data used in this manner are especially prone to
coding error. Gordon and Smith note that disagreement among scholars is one
reason to code causation as ambiguous (2004, 240). However, their qualita-
tive data for the IMF example comes from a single source (Vreeland 2003). It
is possible that other experts have disputed the relative importance of causes
identified by Vreeland in some cases. This would mean that those causes have
been wrongly coded as discernible.!? It is also possible that the cause is not
ambiguous, and that Vreeland, despite his attention to detail, is simply wrong
about which of the two causes was operative. If so, the case is correctly believed
to contain a discernible cause, but the wrong cause is implicated. Returning to
the ordered-probit analogy as it pertains to throbit, if the nonreporting problem
described in Section 4.1 is analogous to coding 1s rather than 2s, the former
error corresponds to coding 2s rather than 1s and the latter corresponds to ac-
cidentally reversing a 1 and a 2 on different dimensions. If such errors are made
in trubit, the wrong truncation is used,'® and coefficient estimates suffer.

10See inter alia Williams (1972), Gaddis (1983), and Hogan (1990) for discussions.

110ne might object that error in the independent variable always produces inconsistency,
sometimes dramatically, in probit analyses in general, and, therefore, that we are holding
Gordon and Smith to a standard that ordinary probit would fail. Such an objection would
be misguided: we are examining robustness in the face of error in expert judgments, which—
mathematically speaking—is incorporated as part of the dependent variable.

12This form of error could also be produced if some other variable, in addition to the one
associated with the mechanism labeled “discernible cause,” may have exceeded its threshold
but gone unnoticed. (See Gordon and Smith’s definition of “ambiguous cause” (2004, 240).)
This possibility is simply noted here but not examined in the Monte Carlo results, as any
number of arbitrarily horrifying scenarios could be concocted to little useful effect. This could
happen, for example, when disagreement among scholars exist as to which mechanism caused
a particular event, but only one source was consulted by a researcher, and so the ambiguity
in causation was not properly noted.

3Equivalent, in this setting, to using equation (8) rather than equation (9) or vice-versa
for trubit-u, or using equation (10) rather than equation (11) or vice-versa for trubit-c.



In short, even if qualitative data on all cases could be gathered, the data-
gathering itself would be a daunting task that would require both extensive
research and the ability to adjudicate among competing historians when a dis-
cernible cause is in fact present but disputed (or absent but purported).

4.2.1 Complications

To make matters worse, there is a tension among these sources of bias: in many
cases eliminating one could produce another. Avoiding underreporting requires
that data for every case in which Y = 1 be examined, but unless very few of these
cases exist, examining all of them thoroughly would be difficult or impossible,
and the reliability of the codings would suffer as a result. Ambiguity may be
missed by experts in a case that has not undergone a thorough investigation—
for example, when more than one mechanism exceeds its threshold, only one
might be discerned by the expert(s)—or if only one study has been consulted
for coding purposes. Similarly, cases that have received quite a bit of historical
scrutiny and debate are, ideally, less likely to fall victim to coding error than
those that have received little scrutiny. Unfortunately, the no-underreporting
assumption requires that expert judgments be obtained even in cases that have
not been very thoroughly scrutinized, so meeting the first assumption might
increase the extent to which the second is violated.

By the same token, tradeoffs can exist between different forms of coding
error. Imagine, for example, that a phenomenon under investigation is of great
scholarly interest and contains relatively few events Y = 1 (e.g., the literature
on the causes of great-power war). Historians have probably analyzed each
event painstakingly and have come up with many contradictory theories. It
is very likely that some historians are simply wrong, while others are correct.
What is the analyst to do? If we code all causes of events over which there
is disagreement as ambiguous, even though some are actually discernible and
have been discerned by the “better” historians, then not all discernible cases are
coded as such. If we attempt to avoid this outcome by turning some of these
“uncoded” cases into coded ones (by, say, adjudicating among historians), then
we run the risk that these contested codings will be erroneous, either because
the case is ambiguous in reality or because the historians that we chose were
mistaken. FEither outcome corresponds to a form of coding error, and there
is a clear tradeoff between the two. All in all, given the assumptions of the
technique, the requirements of coding the qualitative data put the analyst on
the uncomfortable horns of an ugly dilemma.

4.2.2 Results

To see how throbit and trubit perform when errors are present in qualitative
data, we again drew a random number from a uniform distribution on the unit
interval for each observation and reversed the codings of @)1; and Q2; prior to
analysis if that number failed to exceed some fraction #. By altering the value of
0 we were able to control the probability that an observation would be miscoded.

10



Table 1 shows the results for throbit, which are again presented for an illus-
trative case (f = 0.10) in Figure 1. The results demonstrate that even a modest
amount of error in the qualitative judgments can lead to severe inconsistency in
the parameter estimates. Moreover, coverage drops quite rapidly: at 6 = 0.15,
mean coverage drops below 50%, and at 6 = 0.25—not, arguably, an unreason-
able error rate to expect in the social sciences—it dips into the single digits for
four of the six parameters. Tables 2 and 3 show the results for both variants of
trubit. Again, trubit-u performs better than throbit when errors are present,
but the coverage does drop as the percentage of miscoded cases increases. At
6 = 0.15, trubit’s mean coverage drops below 80%. The performance of trubit-c,
on the other hand, is actually marginally worse than that of throbit, both in
terms of both bias and coverage.

One exception to this generalization can clearly be seen, however: coefficient
estimates Bg and 55 in Table 2 seem remarkably robust to violations of this
assumption. Unfortunately, this fact is nothing more than an artifact of the
parameters of the simulation: the population coefficients are all set to 1, the
independent variables are uncorrelated, and (o and (5 are both coefficients on
the same variable, X.;, which appears in both of the model’s “causal paths.”
Therefore, when trubit-u mistakenly estimates ®(3; + B2X.; + #3X1;) rather
than ®(8y + B5Xci + BeXa;), or vice-versa, it happens to produce the same
coefficient.

4.3 The Qualitative Data-Generating Process

The Gordon-Smith approaches are based on a model of the process by which
an expert makes a judgment about whether or not a given mechanism or path
is discernible. It seems likely that the precise way in which data translates into
a qualitative judgment differs from expert to expert and from case to case; in
any event, it is most likely unknowable. This is not a criticism of the Gordon-
Smith model of the process per se—but since the process is hidden inside a
black box, we do need to ensure that their approach would not balk at qual-
itative data generated by a process no less reasonable than the one that they
describe. We show that trubit is considerably more robust than throbit under
these conditions, though neither is as robust as one would like.

Briefly, Gordon and Smith posit that for each causal mechanism j there ex-
ists a certain threshold 7;, and that the experts implicitly use these thresholds
when they make qualitative statements. If one, and only one, latent dependent
variable exceeds its threshold, it is deemed to be the discernible cause of the
event in question. If more than one, or none, does so, the cause of the event
is deemed ambiguous. The experts need not examine the quantitative data,
of course: the technique assumes only that they will code the cases as if they
had done so. We propose two alternative qualitative data-generating processes
(QDGPs) which we think more realistically represent the process by which qual-
itative judgments are rendered. We then analyze data created by these QDGPs
and demonstrate that, unfortunately, throbit in particular is not robust to the
inclusion of qualitative data generated by either one.
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4.3.1 Results

To determine how throbit and trubit would perform if the process by which ex-
perts render qualitative judgments is in fact different from the one postulated by
Gordon and Smith, we set up two alternative QDGPs. In the first, rather than
making their judgments based on whether one latent variable or another has
exceeded a certain threshold, qualitative experts make their judgments based
on the difference between the values of the two latent dependent variables. If
the value of Y is very high and the value of Y5 is very low, the judges are
most likely to encounter qualitative evidence that backs up the conclusion that
Y} is the discernible cause, regardless of whether either has crossed a certain
threshold.

To capture this notion mathematically, we assumed that if ¥; = 1,'4 the
probability that a mechanism will be coded as a “discernible cause” increases in
direct proportion to the difference between predicted probabilities for the two
unobservable latent variables. Simply put, to take the example from the original
article, qualitative judges are most likely to conclude that IMF agreements are
reached on the basis of economic need when the factors that predict need-based
loans are present and those that predict domestic political loans are absent.
Mathematically,

Lif ®(61 + BoXei + B3 X1:)—
Qi = OBy + 5 Xei + PsX2i) > k1 and V; =1 (12)
0 otherwise

1if ®(Bs + BsXei + BoXai)—
Q2 = O(B1 + o Xei + B3X15) > ko and Vi =1 (13)
0 otherwise

, where K represents a random number drawn from a uniform distribution on
the unit interval.

The results produced when trubit-u and trubit-c are applied to data cre-
ated via this alternative QDGP (labeled “Alt. QDGP I” in Table 2 and 3) are
encouraging: for the most part, the technique seems robust in the face of this
alternative assumption. The results for throbit, on the other hand, are disheart-
ening. The magnitude of the bias is more or less equivalent to an error rate of
10% or a qualitative-data sampling rate of 50%, but the bias is in the opposite
direction; mean coverage is similar as well (80%).

One might reasonably object that this process still posits insufficient auton-
omy between qualitative and quantitative data—that archival research might
produce strong evidence that the second mechanism is at work even though
Y% is high and Y5 is low. To take this objection into account, we created a
second QDGP, one in which the probability that a mechanism will be flagged

Though we question the logic of not coding nonevents (footnote 9), in the interest of
exploring alternative assumptions within the context established by the original work we
have assumed that only events generate qualitative judgments. Abandoning this assumption
exacerbates the problems described here.
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as the operative cause increases with the value of the latent dependent variable
associated with it. Here,

Q o 1if 25 < (I)(ﬁl + B2 X + 63X1i) and V; =1 (14)

e = 0 otherwise

Qni = lifl <2k < 1+‘b(ﬂ4+ﬁ5Xci+ﬁﬁX2i> and Y; =1 (15)
no= 0 otherwise

, where k is a single draw from a uniform distribution on the unit interval. To
illustrate, if Y% = 0.8 and Y5; = 0.2, the probability that mechanism 1 will be
flagged is 0.4, the probability that mechanism 2 will be flagged is 0.1, and the
probability that the cause will be deemed ambiguous is 0.5.

The results produced by this alternative QDGP (“Alt. QDGP II” in Tables 1-
3) are more distressing. While trubit-u parameter estimates remain largely un-
changed, throbit parameter estimates range from 0.65 to 0.92, and coverage
ranges from 84% all the way down to 35.8%. Worse, trubit-c parameters range
from 0.51 to 0.80, and coverage ranges from 43.6% to 3.7%, as illustrated in Fig-
ure 2. Clearly, throbit and trubit-c are not particularly robust to this alternative
assumption about the QDGP either.

In short, while the results reconfirm the advantages of throbit over Boolean
probit under ideal circumstances, they also demonstrate that those advantages
hinge critically on a set of conditions—all, or virtually all, discernible causes
coded as such; little to no coding error; and correct specification of the QDGP—
which in practice may be difficult to achieve and even more difficult to verify.

[Table 1 about here.]
[Table 2 about here.]
[Table 3 about here.]
[Figure 1 about here.]

[Figure 2 about here.]

Conclusion

Gordon and Smith offer a clever and badly needed solution to a problem with
partial observability techniques. Incorporating qualitative information into quan-
titative data is a new, promising avenue of research, and the authors should be
applauded for pursuing it. At the same time, it remains a first step. Future re-
search should be oriented toward constructing an estimator that is more robust
to heterogeneity in the QDGP and the amount and quality of qualitative data
available.

No estimator, of course, is perfect. As Gordon and Smith pointed out in
their original article, incorporating additional information via their estimators

13



sometimes permits those estimators to converge when the original data do not
permit Boolean probit to do so—potentially an important advantage that could
outweigh issues of relative efficiency. All probit-based techniques exhibit param-
eter inconsistency as the proportion of 1s or Os becomes very small. Nonlinear
models such as these can typically only promise asymptotic unbiasedness of co-
efficients, and researchers sometimes fail to realize just how much bias might
exist even with a relatively large number of cases. Relevant omitted variables in
probit models, unlike those in regression models, need not be correlated with in-
cluded variables to induce asymptotic bias. And so forth. As a result, inferences,
even in the ordinary probit model upon which all of these techniques are based,
must be made with an ample admixture of humility and hope. Still, progress
requires a thorough understanding of the characteristics of new techniques.

We have shown that Gordon and Smith’s throbit estimator is sensitive to
even minor violations of several key assumptions. Specifically, although throbit
does convey advantages over Boolean probit under ideal conditions, the latter
outperforms the former when even a fraction of the discernible causes are not
identified by the experts, when even a very small fraction of the discernible
causes are misidentified by the experts, or when a process by which experts
identify a cause of an event is different from the one posited by the authors.
Their trubit estimator generally performs better than throbit under less than
ideal conditions, and the trubit-u variant generally outperforms the trubit-c
variant, but both variants underperform relative to both throbit and Boolean
probit under ideal conditions and have as much trouble as throbit when it comes
to coding error. Currently, unless a researcher is quite certain that his or her
qualitative data pass these three tests, he or she might be better advised to
disregard the additional qualitative information rather than to incorporate it in
this fashion.
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Figure 1: Distribution of Boolean probit coefficients (solid line), throbit coeffi-
cients with no error but data on only 50% of discernible causes (dashed), throbit
coeflicients with data on 100% of discernible causes but 10% error by coders of
qualitative data (dotted), and throbit coefficients with error-free data on 100%
of discernible causes but alternative QDGP I (dotted-dashed).
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Figure 2: Distribution of Boolean probit coefficients (solid line), trubit-u coef-
ficients with no error and data on 100% of discernible causes (dashed), trubit-c
coefficients with no error and data on 100% of discernible causes (dotted), and
trubit-c coeflicients with alternative data-generating process QDGP II (dotted-
dashed).

18



List of Tables

1

Sensitivity analysis of throbit. Numbers are mean coefficients;
numbers in parentheses represent percentage of cases in which
the 95% confidence intervals cover the population parameter.
Sensitivity analysis of ML version of trubit-u. Numbers are mean
coeflicients; numbers in parentheses represent percentage of cases
in which the 95% confidence intervals cover the population pa-
rameter. . . . ..o Lo Lo e e e e e
Sensitivity analysis of ML version of trubit-c. Numbers are mean
coefficients; numbers in parentheses represent percentage of cases
in which the 95% confidence intervals cover the population pa-
rameter. . . ... L.

19

20



|

Estimator, Condition ‘ Parameters H 51 ‘ B2 ‘ O3 ‘ [on ‘ Os ‘ B
Boolean probit N/A 1.027 | 1.020 | 1.025 | 1.037 | 1.013 | 1.030
(95.4) | (96.6) | (94.3) | (96.2) | (95.2) | (95.7)
Throbit 0=0,v=1 1.013 | 1.010 | 1.010 | 1.005 | 1.008 | 1.009
100% Data, No Errors (95.2) | (96.1) | (93.9) | (96.1) | (96.2) | (95.9)
0=0,v=09 0.967 | 1.011 | 0.990 | 0.957 | 1.002 | 0.978
(94.8) | (94.7) | (94.7) | (94.3) | (95.1) | (93.2)
Throbit 6=0,v=0.8 | 0.920 | 0.996 | 0.960 | 0.929 | 1.002 | 0.967
with (92.4) | (95.8) | (91.0) | (92.8) | (96.0) | (92.8)
Underreporting 0=0,~v=0.7 0.873 | 0.980 | 0.933 | 0.890 | 0.977 | 0.941
(88.1) | (94.3) | (86.2) | (91.0) | (93.8) | (88.9)
0=0,v=0.06 0.835 | 0.948 | 0.912 | 0.821 | 0.963 | 0.906
(84.1) | (88.5) | (81.3) | (83.2) | (91.4) | (80.0)
6=0,v=0.5 | 0.806 | 0.917 | 0.895 | 0.802 | 0.921 | 0.891
(80.2) | (83.8) | (77.7) | (78.2) | (85.9) | (74.2)
#=0.05~v=11 0833 | 0966 | 0.909 | 0.864 | 0.973 | 0.926
(80.6) | (91.3) | (75.7) | (85.3) | (91.8) | (82.0)
Throbit #=0.10,v=1 1 0.728 | 0.937 | 0.848 | 0.690 | 0.938 | 0.835
with (61.7) | (88.1) | (52.0) | (54.4) | (86.5) | (45.4)
Coding Error #=0.15,v=11] 0.609 | 0.898 | 0.785 | 0.631 | 0.915 | 0.799
(34.2) | (73.9) | (21.7) | (40.2) | (77.5) | (27.9)
0 =0.20,v=11| 0454 | 0.890 | 0.704 | 0.462 | 0.882 | 0.705
(11.1) | (67.4) | (7.0) | (11.3) | (63.5) | (6.1)
=025 ~v=1] 0356 | 0.876 | 0.648 | 0.341 | 0.866 | 0.647
2.9) | (65.7) | (1.2) | (3.7) | (59.2) | (2.1)
Throbit QDGP I 1.204 | 1.079 | 1.120 | 1.198 | 1.067 | 1.118
with (83.3) | (91.3) | (84.8) | (83.8) | (92.2) | (85.1)
Alternative Data- QDGP II 0.686 | 0.903 | 0.837 | 0.653 | 0.923 | 0.807
Generating Processes (53.0) | (77.1) | (49.2) | (45.3) | (84.0) | (35.8)

Table 1: Sensitivity analysis of throbit. Numbers are mean coefficients; num-
bers in parentheses represent percentage of cases in which the 95% confidence

intervals cover the population parameter.
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Estimator, Condition ‘ Parameters H 01 ‘ 6> ‘ 62 ‘ N ‘ 05 ‘ e ‘
Boolean probit N/A 1.027 | 1.020 1.025 1.037 | 1.013 | 1.030
(95.4) | (96.6) | (94.3) | (96.2) | (95.2) | (95.7)
Trubit-u 0=0,v=1 1.129 | 1.072 1.064 1.123 | 1.072 | 1.059
100% Data, No Errors (91.7) | (91.8) | (93.2) | (91.1) | (93.0) | (93.6)
0=0,v=09 1.111 1.059 1.055 1.100 | 1.059 | 1.049
(94.1) | (94.4) | (95.0) | (93.4) | (93.4) | (95.0)
Trubit-u #=0,v=038 1.103 | 1.065 1.053 1.100 | 1.062 | 1.049
with (94.6) | (94.2) | (94.3) | (93.5) | (94.4) | (95.2)
Underreporting 0=0,~v=0.7 1.078 | 1.053 1.04 1.110 | 1.066 | 1.062
(94.5) | (95.2) | (95.8) | (94.8) | (93.0) | (94.3)
0=0,v=0.06 1.083 | 1.054 1.044 1.095 | 1.054 | 1.052
(94.4) | (93.7) | (94.2) | (93.6) | (95.3) | (94.5)
0=0,v=05 1.086 | 1.053 1.045 1.073 | 1.042 | 1.041
(94.3) | (94.8) | (95.9) | (95.7) | (95.8) | (96.9)
# =0.05y=11 1.009 | 1.038 | 0.9874 | 1.026 | 1.051 | 1.001
(95.1) | (94.7) | (93.8) | (94.7) | (94.0) | (94.0)
Trubit-u #=0.10,v=1 1] 0.909 | 1.021 0.928 | 0.902 | 1.035 | 0.921
with (90.4) | (94.7) | (81.7) | (87.8) | (95.8) | (78.8)
Coding Error 0 =0.15,v=1| 0.827 | 1.004 | 0.874 | 0.811 | 1.007 | 0.871
(81.6) | (94.3) | (65.5) | (79.6) | (94.6) | (63.2)
#=020,v=11 0729 | 0.985 | 0.820 | 0.748 | 1.000 | 0.831
(66.0) | (95.1) | (45.0) | (69.3) | (94.6) | (50.6)
#=0.25~v=1]| 0.658 | 1.000 | 0.788 | 0.619 | 0.977 | 0.756
(51.4) | (95.9) | (34.3) | (46.2) | (95.6) | (24.4)
Trubit-u QDGP I 1.120 | 1.047 1.071 1.133 | 1.050 | 1.079
with (95.2) | (95.9) | (94.4) | (92.6) | (95.4) | (93.2)
Alternative Data- QDGP II 1.052 | 1.087 1.022 1.046 | 1.087 | 1.018
Generating Process (94.0) | (92.3) | (94.1) | (96.0) | (92.2) | (95.1)

Table 2: Sensitivity analysis of ML version of trubit-u. Numbers are mean
coefficients; numbers in parentheses represent percentage of cases in which the

95% confidence intervals cover the population parameter.
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Estimator, Condition ‘ Parameters H b1 ‘ 0o ‘ 03 ‘ N ‘ 05 ‘ Os ‘

Boolean probit N/A 1.0274 | 1.020 | 1.025 | 1.037 | 1.013 | 1.030
(95.4) | (96.6) | (94.3) | (96.2) | (95.2) | (95.7)

Trubit-c 0=0,v=1 0.984 | 0.876 | 1.024 | 0.966 | 0.864 | 1.026
100% Data, No Errors (95) (69.6) | (94.5) | (93.8) | (66.3) | (95.6)
0=0,v=0.9 0.973 | 0.911 | 1.022 | 0.960 | 0.861 | 1.024
(95.7) (81) | (96.6) | (95.8) | (64.7) | (96.8)

Trubit-c 0=0,v=0.38 0.928 | 0.912 | 0.997 | 0.947 | 0.866 | 1.005
with (92.5) | (81.1) | (94.8) | (94.8) | (69.1) | (97.1)
Underreporting 0=0,~v=0.7 0.982 | 0.908 | 1.022 | 0.965 | 0.909 | 1.008
(94) (81.6) | (95.2) | (95.5) | (82.4) | (95.6)

0=0,v=0.06 0.995 0.923 | 1.025 | 1.021 | 0.912 | 1.032
(95.2) | (85.6) | (96.1) | (95.8) | (82) | (95.5)

0=0,v=0.5 0.993 | 0.922 | 1.020 | 0.983 | 0.937 | 1.015
(95.4) | (85.6) | (95.1) | (94.8) | (87.1) | (94.7)

0=0.05~v=1| 078 | 0.812 | 0.919 | 0.814 | 0.832 | 0.926
(75.7) | (41.9) | (80.5) | (78) (48) | (82.2)

Trubit-c #=0.10,v=1 | 0.650 | 0.800 | 0.836 | 0.652 | 0.805 | 0.838

with (44.7) | (37.3) | (49.4) | (44.3) | (39.5) | (49.9)
Coding Error =015 ~v=1| 0504 | 0.781 | 0.759 | 0.524 | 0.764 | 0.769
(19.8) | (28.1) | (21.3) | (19.6) | (22.7) | (23)

0=020,v=1| 0428 | 0.747 | 0.721 | 0.349 | 0.727 | 0.668

(5.9) (15) 9) (3.1) | (10.8) | (3.5)

0=025~v=1| 0279 | 0.733 | 0.646 | 0.272 | 0.729 | 0.643

2.7) | (133) | (3) | (1.4) | (10.4) | (1.8)

Trubit-c QDGP I 1.159 | 0.972 | 1.111 | 1.126 | 0.968 | 1.098

with (91.8) | (93.6) | (90.7) | (92.7) | (92.1) | (91.7)
Alternative Data- QDGP II 0.580 | 0.730 | 0.802 | 0.514 | 0.691 | 0.767
Generating Process (33.5) | (7.9) | (43.6) | (16.7) | (3.7) | (24.8)

Table 3: Sensitivity analysis of ML version of trubit-c.

95% confidence intervals cover the population parameter.

22

Numbers are mean
coefficients; numbers in parentheses represent percentage of cases in which the



