
 
 
   

 
 

PARADIGM UNCERTAINTY 
AND THE ROLE OF  

MONETARY DEVELOPMENTS  
IN MONETARY POLICY RULES 

 
 

 
February 2002 

 
Abstract: When taking monetary policy decisions, central banks face 
considerable uncertainty about the transmission mechanism of monetary policy to 
the price level. In particular, the role played by monetary developments in the 
transmission mechanism is not well understood. Two paradigms exist: one assigns 
monetary developments an entirely passive role; the other gives money an active 
role, beyond that of an indicator variable. Taking such uncertainty as a starting 
point for analysis, this paper evaluates a number of monetary policy rules for 
short-term interest rate decisions in the face of paradigm uncertainty. It describes 
what constitutes an efficient rule in this context and discusses procedures leading to 
the adoption of such rules. 
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1.   Introduction1 

 Uncertainty exists regarding the correct specification of structural macroeconomic models. 
Policy makers should factor their limited knowledge of the economy into the process by which they 
take monetary policy decisions. Otherwise, a monetary policy rule which is optimal (or near optimal) 
within one specific, favoured model might produce undesirable results in practice if that model is a 
poor description of the way the economy actually behaves.  

 This paper analyses a situation where uncertainty exists about the role played by monetary 
developments in the transmission mechanism of monetary policy to the price level. Broadly 
speaking, two main paradigms regarding the determination of the price level and the channels of 
monetary transmission can be identified in the literature. Under one paradigm, price developments 
are viewed as being driven by the interaction of aggregate demand and supply and cost pressures. 
Monetary policy influences price developments through its impact on demand conditions. Under the 
other paradigm, price developments are seen as primarily a monetary phenomenon. In particular, 
monetary policy influences prices and inflation via monetary developments.  

 Because of uncertainty about which paradigm best reflects the true (but unknown) structure of 
the economy, formulating a unified reference model is difficult. This difficulty is exacerbated if the 
available empirical evidence supports both paradigms and does not allow one model to be discarded 
in favour of the other (i.e. the testable restrictions implied by the models are not nested and both 
sets of restrictions fail to be rejected).2 Agreeing on a single reference model might be especially 
difficult in a collegial decision-making body. With these concerns in mind, we investigate a situation 
where policy-makers are assumed to entertain two different reference models as guides for monetary 
policy decisions. Under these circumstances, we analyse how policy makers might formulate a 
monetary policy rule that “performs well” in both paradigms. 

 Several contributions to the literature have addressed the design of policy rules that “perform 
well” across various models. One strand of research (e.g., McCallum, 1988; Taylor, 1998; Blinder, 
1998) is based on simulating different policy rules in a variety of models in order to uncover the 
characteristics that a rule should display in order to guarantee a good performance (in terms of 
moments) across models. Another approach (e.g., Levin, et al., 1999, 2001) is based on minimising 
an average (quadratic) loss function across different models.3 From a Bayesian perspective, this 
approach corresponds to the adoption of flat or uniform priors about which model describes the 
“true” structure of the economy. In addition, when uncertainty is modeled within a unified reference 
model rather than across models, several papers (e.g., Sack, 1998; Martin and Salmon, 1999) have 
analysed the effects of Brainard (1967) uncertainty on the optimal monetary policy rule. More 
recently, the engineer literature on robust control has been applied to the implementation of 
monetary policy under uncertainty (e.g., Stock and Onatski, 1998; Tetlow and von zur Muehlen, 
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2000). Such analysis has shown how to incorporate structured and unstructured uncertainty into a 
unified reference model of the economy and illustrated how a solution of the resulting problem can 
be characterized in terms of finding a rule that performs well even in the worse case scenario.  

 This paper follows the spirit of Levin, et al. (1999, 2001). However, our approach differs in two 
respects. First, we focus on models that postulate completely different transmission mechanisms 
(i.e., models that represent different paradigms). Second, we also analyse rules for monetary policy 
that protect against the worse case scenario.  

 The paper is organised as follows. In Section 2, we briefly outline the two simple 
macroeconomic models used to define the essence of the two paradigms of monetary transmission. 
Section 3 motivates the approaches adopted in the paper, while Section 4 presents results for a 
variety of different policy rules. Section 5 briefly concludes. 

2. Two models of the inflation process 

 This section describes two familiar models of the inflation process. Each model captures the 
essence of one of the two main paradigms of the monetary policy transmission mechanism, as 
discussed by Selody (2001).  

2.1 The output gap model 

 The output gap model (henceforth OGM) relates inflation dynamics to deviations of output 
from its potential level. As the output gap widens, demand pressures increase. Demand conditions 
allow productive firms to widen their profit margins, thus creating inflationary pressure. This model 
has become the workhorse for much recent analysis of monetary policy. Its microeconomic 
foundations, relying on staggered price and wage adjustment (of the type suggested by Taylor (1980), 
Calvo (1983) and Rotemberg (1982)), have been developed in some detail. 

 Within the OGM, monetary policy (represented by a short-term nominal interest rate under the 
control of the central bank) influences price dynamics as follows. Since prices exhibit some 
stickiness, an increase in the nominal interest rate translates into higher real interest rates. Through 
intertemporal substitution, higher real interest rates constrain consumption and investment demand. 
By changing the short-term nominal interest rate, the central bank can influence demand conditions, 
the output gap and, via the Phillips curve, inflation. 

 In its simplest, backward-looking form, the model can thus be presented as: 

 tstttOGMtOGMt pEiyy ,111 )( εδλ +∆−−= −−−  ( 1 )  

 tstttt yypp ,
*

111 )( εβ +−+∆=∆ −−−  ( 2 ) 

 0* =ty   ( 3 ) 
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where y is output; y* is potential output; i  is the short-term nominal interest rate under the control 
of the central bank; p is the price level and εd and ε s are demand and supply shocks respectively. Et-1xt 
represents the expectation of xt at time t-1, where t  is (discrete) time. For notational simplicity, the 
variables are demeaned and detrended, such that potential output is zero (as reflected in equation 
(3)). 

 In this paper, we use a backward-looking version of the Phillips curve, rather than the forward-
looking version which has found favour in the New Keynesian literature.4 Like Rudebusch and 
Svensson (1998), we adopt this approach to facilitate the presentation of simple and transparent 
solution techniques to the model. The results should therefore be regarded as illustrative rather than 
empirically motivated. 

 We append a money demand equation to the basic OGM. As price and output dynamics are 
fully determined by equations (1) through (3), money does not play any active role in the 
transmission mechanism of monetary policy within the OGM. This money demand equation has a 
standard error correction specification, as shown below. 

 tmttttt iypmpmpm ,1111 ))(()()( εγϑφ ++−−−−∆=−∆ −−−−  ( 4 ) 

where m is the money stock and εm  is a monetary shock. 

 Some simple algebra allows the OGM to be written in a state space form.5 
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which for simplicity we can denote: 

 xt+1     =     AOG xt    +    BOG  it     +     ε OG,t+1  ;       E ε OG′εOG  =  ΣOG ( 5 ) 

2.2   The P-star model 

 The P-star model (henceforth P*) – originally proposed by Hallman, et al. (1991) and recently 
applied to the euro area by Gerlach and Svensson (2000) – gives an active role to monetary 
developments in inflation dynamics. Specifically, inflationary pressure is related to the real money 
gap, which measures the excess of real money over that consistent with monetary equilibrium. Prices 
revert to the level implied by monetary equilibrium through an error correction process. 

 The microeconomic foundations of the P* model are not well developed. Implicitly, the model 
can be related to the view that monetary disequilibria result in greater spending and thus more 
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demand pressures (e.g. Laidler, 1998). More generally, the P* model can be seen as a reduced form 
representing a narrative view of monetary transmission with a long pedigree, namely one that places 
imperfections in the financial system, monetary expansions and the resulting credit booms and busts 
at the heart of explanations of macroeconomic developments (e.g. Friedman and Schwartz, 1962; 
Kindleberger, 1987; Minksy, 1982). 

 In the P* model, we continue to use the short-term nominal interest rate as the instrument of 
monetary policy. Monetary policy therefore affects inflation dynamics through influencing monetary 
developments. Continuing to characterize monetary policy using short-term interest rates despite the 
inherently monetary nature of the P* model permits comparisons with alternative models to be 
made. 

 We characterise the P* model following Gerlach and Svensson (2000).  

 tstttPtPt pEiyy ,11*1* )( εδλ +∆−−= −−−  ( 6 ) 

 tmttttt iypmpmpm ,1111 ))(()()( εγϑφ ++−−−−∆=−∆ −−−−  ( 7 ) 

 tsttttt ppppp ,
*

11
*

11 )()1( εµωω +−−∆+∆−=∆ −−−−  ( 8 ) 

 tttt miymp =−−= *** µ  ( 9 ) 

where the notation is the same as above, with i* the nominal short-term interest rate holding in 
steady state equilibrium with price stability, normalized to zero.  

 Again some simple algebra allows this system to be written in state space form as: 
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or, in simplified notation, as: 

 xt+1     =     AP* xt    +    BP*  it     +     ε P*,t+1          E ε P*′εP*  =  ΣP* ( 10 ) 

Note that expression (10) does not have a block recursive structure (i.e. the upper right elements of 
the matrix AP* are non-zero). This reflects the active role of money in the transmission of monetary 
policy actions to the price level. 
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2.3 Some observations on the structure of the two models 

 On the basis of the preceding discussion, two observations regarding the structure of the two 
models should be noted, since they have important implications for the empirical implementation of 
the approach suggested in this paper. 

 First, because of the inflation expectations term in the real interest rate, a number of cross 
equation restrictions are imposed by the two models. These restrictions imply that the aggregate 
demand and supply equation in the OGM - and all the three equations in the P* - should be 
estimated as a system rather than equation-by-equation. As a result, the parameter estimates for the 
P* model may differ from those estimated for the OGM, even if the structure of the equations is the 
same (as is the case for the aggregate demand equation (1) and (6)). 

 Second, the restrictions imposed by the two structural models on the unconstrained system: 

 xt+1     =     A xt    +    B  it     +     ε t+1 ( 11 ) 

are not nested. In other words, using specification (11) as an encompassing model, the data may fail 
to reject both the OGM and P* models. In particular, excluding the money gap from the inflation 
equation (i.e. imposing a23 = a24 = 0 in (11), where aij is the element in the i th row and j th column 
of matrix A) is not sufficient to reject the P* model in favour of the OGM.  

 This second observation is crucial. It provides a basis for taking the view that making a choice 
between the two competing models of the inflation process may not be possible using the available 
data. The empirical plausibility of both models is central to the multi-model approach underlying 
this paper. If one of the models were to be rejected by the data while the other was not, the 
empirical basis for such a multi-model approach would not exist. 

2.4 Deriving optimal monetary policy rules for the two models 

 To provide a metric for the comparison of competing monetary policy rules and to characterize 
optimal monetary policy in the context of the two models considered here, the central bank’s 
objective function needs to be specified. Following much of the existing academic literature, we use 
a quadratic loss function which is a weighted average of the variance of the output gap and the 
variance of inflation around its target level consistent with price stability. The central bank’s loss is 
then given by: 
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where the inflation objective has been normalized to zero. This expression can be written more 
concisely as: 
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 Note that this objective function accords no weight to monetary dynamics or interest rate 
volatility. Developments in monetary growth or interest rates are ultimately only of concern to the 
central bank insofar as they affect developments in the goal variables, inflation and output. Central 
bank responses to current or lagged monetary developments therefore reflect the information such 
developments contain about future inflation and output gap developments. They do not imply an 
intrinsic concern for monetary dynamics. 

 The monetary policy problem facing the central bank in each of the two models can then be 
expressed as follows: 

 minimize g L(x) subject to xt+1  =   Ai xt  +  Bi  it  +  ε i,t+1        i  =  OG, P* ( 13 ) 

where g is a monetary policy rule. Given the simple backward-looking nature of the two models 
being considered, standard optimal control techniques can be used to solve this problem for the 
optimal monetary policy rule. These rules express the short-term interest rate as a function of the 
state vector, xt. In this simple linear quadratic framework, the optimal rules are linear and are 
denoted it = fOG xt and it = fP* xt for the OGM and P* model respectively. 

 In this paper, we use parameter estimates from the literature to calibrate the two structural 
models. The selected parameter values are reported in Table 1. (Note that, notwithstanding the 
comments made above, we assume the same parameter value for the two models when a common 
parameter appears.) Table 2 reports the optimal policy rules for each of the two models when the 
loss function parameter ψ = 0.5. 

 As expected, the passive money paradigm (represented by the OGM) implies that monetary 
policy should not respond to monetary developments, whereas the active money paradigm (here 
captured by the P* model) implies the opposite. However, it is difficult to interpret the magnitude of 
the coefficients in the optimal rules given that the models are very simple. To get an intuition of the 
characteristics of the two models and their associated optimal rules we derive impulse response 
functions and Taylor curves. 
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2.5 Characteristics of the two models 

a) Impulse responses 

 Some features of the two models are revealed by deriving the impulse response functions, which 
trace how each variable in the system responds to structural shocks. These functions naturally 
depend on how monetary policy responds to the shocks. The impulse responses are shown in Figure 
1, where monetary growth is derived from the path of the real money stock and inflation dynamics. 
In these charts, short-term interest rates are assumed to follow the path prescribed by the optimal 
monetary policy rule for the model under investigation, derived as described above. 

 A number of features of the impulse responses are noteworthy.  

 First, the dynamic response of each system is shock specific. A demand shock implies different 
inflation, output and monetary dynamics from a supply shock. As a result, the monetary policy 
response varies with the nature of the shock. 

 Second, the responses to structural shocks are model specific. A demand shock produces one set 
of inflation, output and monetary dynamics in the OGM and another in the P* model. Reflecting 
the different model specifications, the optimal monetary policy response to a demand shock 
therefore also differs across models. 

 Third (and a special case of the preceding observation), in the OGM money demand shocks 
constitute “pure noise” in the sense that they do not affect either of the goal variables, inflation and 
output. As reflected in the optimal policy rule for the OGM, a well-designed monetary policy would 
therefore not respond to monetary developments. In contrast, in the P* model monetary shocks 
affect inflation and output developments: the former directly (since money enters the inflation 
equation via the P* terms) and the latter indirectly (through the effect of money on inflation 
expectations and thus real interest rates). As a result, optimal monetary policy will respond to 
monetary dynamics (resulting in a third channel of transmission from money to goal variables 
through changes in the short-term nominal interest rate). 

 This third observation characterizes more precisely the distinction between the passive view of 
monetary developments in the inflation process represented by OGM and the active view inherent 
to the P* model. 

b) Taylor curves 

 Other features of the two models are revealed by Taylor curves, which trace out the locus of 
optimal inflation volatility / output volatility combinations that are attainable within each model. 
Each point on the Taylor curve is associated with an optimal monetary policy rule derived from 
problem (13) as the weight on inflation volatility in the loss function (ψ) varies between zero and 
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one. The closer the Taylor curve lies to the origin, the greater the scope for policy makers to 
stabilize inflation and output. The greater the convexity of the Taylor curve, the less pronounced the 
trade off between inflation volatility and output volatility. 

 Figures 2a and 2b show the Taylor curves for the OGM and P* model respectively, together 
with the point on the curve corresponding to the optimal rules with ψ = 0.5 derived above.  

 As one would expect, the Taylor curves differ, reflecting the different underlying structure of the 
two models. In particular, as shown in Figure 2c, the P* Taylor curve lies outside the OGM Taylor 
curve. This reflects the greater difficulty in stabilizing inflation and output in the P* model arising 
from the fundamental structure of the model and the shocks to it. In subsequent sections, it will 
prove useful to recall that stabilization in the P* model poses a greater challenge for monetary 
policy. 

 Note that a change in central bank preferences (ψ) represents a move along the Taylor curve, 
whereas a change in model parameters (Ai, Bi, Σ i ; i = OG, P*) in general results in a shift of the 
Taylor curve or a change in its form. However, because of the passive role played by money in 
inflation and output dynamics within the OGM, changes to the parameters of the money demand 
equation (4) (φ, υ, γ) or to the variance of monetary shocks (E εm

2) do not shift the Taylor curve in 
the OGM. In contrast, such changes do shift the Taylor curve in the P* model, a reflection of the 
active role of money in that context. 

3. Designing monetary policy rules under paradigm uncertainty 

3.1 Motivation 

 Given that neither the OGM nor the P* can be dismissed ex ante on empirical grounds, 
monetary policy decisions should allow scope for analysis and insights from both paradigms to play 
a role.  In other words, the central bank should adopt a monetary policy strategy that “performs 
well” in both models, rather than being performing optimally in one model or in the other. Note 
that the characterization of the monetary policy problem facing central banks in expression (13) 
does not resolve the issue of how to select such a rule. This characterization of policy makers’ 
preferences assumes that policy makers will minimize the loss function within a single structural 
model. It is silent as to how the implications of having two models, neither of which can be rejected 
on empirical grounds, should be addressed. 

 The problem of designing policy with rival models was analysed by Chow (1976) who suggested 
to construct a payoff matrix which shows the costs of basing the optimal policy on one of the 
models and assuming that the real world is represented by the rival model. The optimal policy under 
model uncertainty should thus be based on choosing the policy that causes least damage. The 
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shortcoming of this approach is that the optimal policy under uncertainty is restricted to be either 
the optimal policy of one model or that of the other.  

 A simple example helps to illustrates this point. Consider a central bank that operated solely on 
the basis of the P* model. Given preferences ψ, this central bank would set short-term interest rates 
on the basis of the optimal rule for the P* model and thus achieve a point on the P* Taylor curve (as 
illustrated in Figure 2b). However, if economic outcomes were determined by the OGM, the 
adoption of this rule would be sub-optimal. In principle, such a rule may not stabilize the economy, 
resulting in the loss of price stability and explosive inflation. In less extreme cases (and in the 
examples shown here, as illustrated in Figure 3a), the rule would yield an inefficient inflation 
volatility / output volatility combination (i.e., one inside the OGM Taylor curve).  

 For example, for preferences ψ, any rule which yields an inflation volatility / output volatility 
combination in the area ABCD in Figure 3a would dominate the optimal P* rule, in the sense that it 
results in a lower loss according to the loss function (12). Indeed, any rule giving an inflation 
volatility / output volatility combination in the area AEF would strongly dominate the optimal P* 
rule, i.e. result in both lower inflation volatility and lower output volatility. Note the rules that are 
not fully optimal in the OGM (i.e., rules which do not lie on the OGM Taylor curve) can satisfy one 
or both of these criteria.  

 Of course, the mirror image of this example is also feasible. Consider a central bank that bases 
its monetary policy decisions on the OGM when economic outcomes are determined by the P* 
model. Again, sub-optimal policy will result. Figure 3b illustrates how any policy rule which yields an 
inflation volatility / output volatility combination in the area ABCD will dominate the optimal 
OGM rule in the P* model. 

 Therefore, monetary policy under paradigm uncertainty should be based on analysis using both 
models. A well-designed rule under paradigm uncertainty will not, in general, coincide with the 
policy derived optimally for either of the two models alone. 

3.2 The efficient locus of combinations of losses in the two models 

 Before considering how a central bank might address paradigm uncertainty, we derive a tool that 
will help describing our results. In the simple models developed in Section 2, the state of the 
economy at any time t  is fully described by the state vector xt, which has four elements: the output 
gap; inflation; and the current and one period lagged real money stock. Given the backward looking 
nature of the models we consider, issues of commitment (which give rise to policy rules involving 
additional constraints and thus greater complexity than functions of the state variable) do not arise 
in this context. Therefore, we restrict ourselves to linear policy rules which are a function of the four 
elements of the state vector (i.e. it = g xt, where g is a vector of policy rule coefficients).  
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 For each policy rule g we can derive the resulting loss in the OGM and the P* model, which we 
label LOG and LP* respectively. Figure 4 plots pairs of losses from the two models for a variety of 
policy rules in the LOG / LP* space. The line AB shown in Figure 5 surrounds the set of attainable 
(LOG, LP*) combinations and thus represents the locus of points which, for a feasible value of LOG, 
minimise the value of LP* and vice versa, i.e. 

 LOG = m (LP*) where m (LP*) = LOG(h) = ming {LOG(g)} subject to LP*(h) = LP* ( 14 ) 

This locus can be derived for a given parameterization of the two underlying structural models using 
numerical methods. (Figures 4 and 5 use the parameter values from Table 1.) For reasons of 
notational simplicity, we label this locus AB M. A monetary policy rule h is associated with each 
point on M. As will be developed further below, the locus M is a useful expositional tool for further 
analysis. It exhibits a number of noteworthy features. 

 First, the shape of the M is a function of all the parameters introduced in Sections 2 and 3 (and 
listed in Table 1). While it is natural that the curve depends on the structural parameters of the two 
models under consideration, M is also influenced by central bank preferences (ψ) (since these enter 
the calculation of the losses for the two models). In addition,  M depends on the covariance matrices 
of the structural shocks in the two models (Σ i ; i = OG, P*), since certainty equivalence in linear-
quadratic models of the type discussed here only holds for optimal policy rules, not for other rules 
such as those tracing the interior of the locus M. 

 Second, it is straightforward to pin down two points on M, namely those which are associated 
with the optimal rules for each of the two structural models (points A and B in Figure 5). These 
rules can be derived using standard optimal control techniques as described in Section 2.4. The 
corresponding loss in the other paradigm can be obtained simply by substitution of the rule into the 
alternative model. A and B correspond to the points illustrated in the Taylor curves in Figures 3a 
and 3b. Because of the optimality of the policy rules underlying these two points, the locus M is 
always to the right of the line AC (since LP*(g) = LP*

min, ∀g) and above the line BD (since LOG(g) = 
LOG

min, ∀g). 

 Third, M is convex to the origin. The intuition underlying is simplest to follow close to the rules 
defining points A and B. These points are associated with the optima for the two underlying models. 
In a smooth linear model such as those considered here, small perturbations to the policy rule 
parameters in the vicinity of the optimal rule should produce modest changes in the loss function 
for the model in which that rule is optimal (since close to a minimum the sensitivity of Li(g) to small 
changes in the parameters of the policy rule will be modest). However, small perturbations to this 
rule will produce larger changes in the loss for the other model (since away from the optimum rule 
the sensitivity of Lj(g) to policy rule parameter changes will be large). This result is also illustrated by 
Figure 4.6  
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 Fourth, it is straightforward to see that movements in a “north-easterly” (NE) direction in the 
LOG / LP* space are unambiguously undesirable: they entail an increase in the loss for both of the 
structural models being entertained by this paper. By the same token, movements in the SW 
direction are unambiguously desirable: they lower the loss in both models. Therefore, where M is 
positively sloped, central banks should always favour policy rules that shift along M in a SW 
direction. 

 Fifth, where M is negatively sloped (as in the interval AB in Figure 5), an unavoidable trade off 
exists between losses in the two models. One cannot choose a policy rule that will reduce the loss in 
one of the models without raising the loss in the other model. In what follows, we discuss various 
approaches which central banks may use to confront this trade off.  

4. Monetary policy rules in the face of paradigm uncertainty 

 In this section, we consider how central banks might address the paradigm uncertainty that 
underlies the multiple model framework discussed above. We consider three approaches: first, 
various schemes that apply weights to the models; second, a method based on the minmax criterion 
familiar from game theory; and, third, methods relying on the construction of encompassing 
inflation forecasts which combine analysis from both models. Each of these approaches address the 
issue of how to arrive at a single monetary policy rule for short-term interest rate decisions, while 
nevertheless combining the analysis and implications of each of the two models or paradigms being 
entertained. 

4.1 Weighting schemes  

a) Weighting the loss functions 

 A natural starting point to combine the information revealed by analysis of the two structural 
models would be to assign weights to the two loss functions and optimize over the combined 
problem. In this context, the central bank’s problem can be written as: 
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 Prima facie this problem appears very similar to the standard optimal control problem discussed 
in Section 2.4. However, the final constraint (F = [ f  f ]) precludes the straightforward adoption of 
dynamic programming methods. This constraint requires that the policy rule employed by the 
central bank is identical in the two models, i.e. the central bank must specify how it will respond to 
developments in the state variables without knowing which of the two models it is confronting. This 
constraint reduces the number of policy rule parameters to be chosen and thus, in the language used 
by Söderlind (1998), results in a simple policy rule, rather than the fully optimal rule. (Note that the 
terminology here is somewhat misleading. The constraint is a fundamental part of the problem 
posed by paradigm uncertainty, not a simplification introduced to reduce computation time or for 
presentational ease.) 

 As Söderlind (1998) demonstrates, problem (15) can be solved using numerical techniques. Note 
that the solution will not, in general, exhibit certainty equivalence. In particular, as the presence of 
correlation between the fundamental shocks in the two models could reduce or increase the trade-
off between losses in the two models, any correlation between εOG and εP* will affect the chosen 
policy rule.  

 As q varies from zero to one, the solution to problem (15) traces out the efficient M locus. By 
construction, the solution to this problem will therefore yield an efficient outcome, in the sense that 
the resulting policy rule will lie on M. In other words, every point on M in the range AB in Figure 5 
is supported by a solution to problem (15) for some value of q between zero and unity.  

 The intuition behind this result is straightforward. If one is minimizing a weighted average of the 
two loss functions, one will always chose the lowest attainable loss in model i for given loss in model 
j and vice versa. Therefore, problem (15) can be restated in a form that replicates the definition of 
the efficient locus M, as captured in expression (14). 

 If q is interpreted as a Bayesian prior probability for the OGM (chosen exogenously and a priori 
by policy makers), this approach provides a criterion for identifying a unique optimal monetary 
policy rule which will be efficient (at least in the specific, well-defined sense used in this paper). 

 One can restate problem (15) in simpler terms as: 

 minimize g K = [q LOG(g) + (1-q) LP*(g)]  ( 16 ) 

subject to the constraints imposed by the two underlying structural models. Using the terminology 
introduced by Svensson, this statement of the problem can be viewed as defining a “target rule” for 
monetary policy in the face of paradigm uncertainty. In other words, the monetary policy rule is 
defined implicitly as a solution to a well-defined economic problem. Note, however, that in this 
context the resulting rule will depend on the Bayesian prior probability or weight (q), which is 
determined outside the model. 
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 As shown in Figure 6, minimization of a weighted average of the two loss functions involves 
finding a point of tangency between M and a (negatively sloping) line with gradient (q - 1)/q. A 
natural benchmark rule would set q = 0.5 (representing a uniform Bayesian prior over the two 
paradigms). Assuming that the shocks in the two paradigms are uncorrelated (as is the case for the 
parameterization in Table 1), the procedure implied by (15) then minimizes the mean of the two loss 
functions. In Figure 6, this results in the selection of the monetary policy rule associated with point 
E, the point of tangency between M and a negatively sloped 45° line (LOG = -LP*). The resulting 
mean loss is Kq=0.5. 

 Table 4 reports the optimal Bayesian rule based on a weighting of the loss functions with q = 0.5 
and compares it with the optimal rules for each of the two underlying structural models. 

b) Weighting the two structural models 

 An alternative approach to a Bayesian weighting scheme would assign a subjective prior 
distribution over parameter values. To maintain the essence of the multiple paradigm approach, we 
assign weights to each of the two models rather than to individual parameters. q represents the 
weight on the OGM and (1-q) the weight on the P* model. More complex distributional 
assumptions for the underlying parameters are possible. However, if the weighting does not apply to 
each model as a whole but rather to the individual parameters in the unrestricted version (11), then 
giving a structural interpretation to the system may prove difficult. More importantly, in a monetary 
policy setting it would imply that policy-makers have to agree on a reference model and then 
consider the uncertainty surrounding some of its parameters or features. This might be very difficult, 
especially in a collegial decision-making body. 

 Weighting models rather than individual parameters can also be interpreted as making strong 
assumptions about the joint prior distribution of the individual parameter values. In particular, the 
implicit joint distribution associated with this approach implies that concerns about the 
controllability of the system under some configurations of parameter values do not arise. (This is 
one of the issues identified by the existing literature as a cause of the attenuation result deriving 
from analysis of so-called Brainard (1967) uncertainty.) In this paper, we assume that we are either in 
one or the other of the structural models. Since price developments are controllable using monetary 
policy in both models, issues of controllability do not arise. 

 The resulting weighted average model is then amenable to the same analysis as discussed in 
Section 2.4, whereby optimal control techniques allow an optimal policy rule to be derived. The 
problem facing the central bank can be written as: 

 minimize  L(x)  ( 17 ) 

 subject to   xt+1 = (qAOG + (1-q)AP*) xt + (qBOG + (1-q)BP*) it  + (qεOG,t+1 + (1-q) εP*,t+1)  
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 This problem can be solved using conventional linear quadratic optimal control techniques 
(since the problem merely amends the transition equation in a linear manner). The results for the 
parameterization shown in Table 1, assuming a uniform prior distribution (q = 0.5, giving the two 
paradigms equal weights), are shown in Table 5.  

 By comparing Table 4 with Table 5, it is evident that the coefficients of the policy rule which 
minimizes a weighted average of the loss functions are greater than those obtained when the models 
themselves are weighted. This runs counter to the well-known Brainard (1967) result that parameter 
uncertainty leads to less aggressive interest rate responses to economic developments. The intuition 
behind this result follows from the previous discussion of the different impact of paradigm and 
parameter uncertainty on controllability. Since controllability is not a concern in the context of 
paradigm uncertainty (as we have described it), there is no reason to attenuate policy responses that 
would potentially be destabilizing if the system were not controllable. 

c) Weighting the optimal rules from the two paradigms 

 Another weighting scheme involves constructing a weighted average of the optimal policy rules 
for each of the two underlying structural models, i.e.  

 it  =  g xt  =  q fOG xt    +    (1-q) fP* xt     ( 18 ) 

Note that this rule is ad hoc in the sense that it is not derived from a well-specified optimization 
problem facing the central bank. 

If the optimal rules are linearly independent, it is possible to obtain any interest rate simply by 
choosing an appropriate value of q. Therefore, if q is time varying, any policy rule can be replicated 
using this approach. However, such a procedure suffers from one of the following two 
shortcomings. On the one hand, if the weight q is chosen in an entirely ad hoc fashion, the 
procedure has little claim to be rule based. On the other hand, if a well-specified procedure for 
determining the choice of weights exists, this procedure needs to be explained. In practice, this 
would imply a more complicated rule than suggested by the simple formulation above. 

 To overcome these problems, it may prove to be more useful to consider rules that adopt a fixed 
weight q at the outset, where q is again seen as a Bayesian prior probability for the OGM. Figure 6 
illustrates the range of outcomes achievable in the LOG / LP* space as q varies between zero 
(corresponding to point A, where the central bank adopts the optimal rule for the P* model) and 
one (corresponding to point B, where the optimal rule for the OGM is adopted). 

 By construction, the locus of LOG and LP* combinations must lie on or inside M. As is reflected 
in Figure 7, in general this locus will be strictly inside the efficient locus M, i.e., the locus derived 
from rules like (18) is not as convex as M. In economic terms, this implies that rules of the form 
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suggested by equation (18) are not efficient, in the sense that alternative rules exist which allow a 
lower loss to be obtained in both the P* model and the OGM. However, under the model 
parameterizations adopted in this paper, the potential gain is relatively small. 

 The intuition behind this result is as follows. Since we are entertaining two models, a weighted 
average of the optimal rules implied by the two models spans a two-dimensional space. However, 
given the dimension of the state vector (4 × 1), one needs to span a four-dimensional space if an 
efficient rule (i.e. one which corresponds to a point on M) is, in general, to be obtained. This is not 
possible with a formulation such as (18). Expressed simply, by choosing the weight q appropriately, 
one can replicate two coefficients of an efficient rule, but in general this will not guarantee that the 
coefficients on the other two elements of the state vector are appropriate. 

 This result has a significant policy implication. It demonstrates that there is a return to integrated 
analysis of the two underlying structural models. If a rule like (18) were able to obtain efficient 
outcomes on M, this would suggest that analysis of the two models could be undertaken 
independently. Having derived the optimal rule for each model, all that is required is an appropriate 
weight to be chosen. The preceding analysis demonstrates that, in general, the outcome resulting 
from this approach can be improved upon in both of the underlying structural models if analysis 
using the two models is cross-checked and evaluated in an integrated manner. There is a return to 
using such integrated analysis as input into a single monetary policy rule encompassing both 
paradigms, which is associated with a point on M. This result develops the intuition introduced in 
Section 3: once paradigm uncertainty exists, deriving the optimal rules for each paradigm is, in 
general, not sufficient to provide the information required for policy makers to address paradigm 
uncertainty in an efficient manner. 

 Table 6 reports the performance of a rule derived from expression (18) with the weight q = 0.5. 

 It should be noted that the rules derived using the approach based on weighting the two 
structural models (i.e. expression (17)) trace out the same locus in the LOG / LP* space as those based 
on a weighting of the two optimal rules for the models (i.e. expression (18)). In other words, these 
two approaches allow the same set of (LOG, LP*) combinations to be attained. However, the same 
weight will yield different points on this locus, as shown in Figure 7. 

 Two points follow. First, care is required in setting the weights assigned to each of the two 
paradigms when a Bayesian approach is being followed. The same weight will give different results 
depending on the approach adopted to integrating the analysis from each of the two underlying 
structural models. The weights therefore need to be interpreted with care. 
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 Second, both the weighting model and weighting rule approaches to arriving at a single interest 
rate rule are inefficient in the sense that any rule derived using these methods can be strictly 
dominated by another feasible rule which achieves a lower loss in both models, which itself lies on 
the efficient locus M and is associated with the minimization of a weighted average of the two loss 
functions.  

4.2 The minmax rule 

 Minimizing the average loss in the two structural models, while by construction optimal on this 
criterion, exposes the central bank to larger losses in one model than the other. In selecting 
monetary policy rules, central banks may entertain an alternative criterion, which permits a greater 
mean loss but risks a smaller maximum loss. In other words, a central bank may attempt to insure 
itself against bad outcomes (the worse case scenario), paying a premium for this insurance in the 
form of a higher average loss.  

 The simplest characterization of such an approach (and one widely discussed in the literature) is 
the adoption of a minmax criterion for selecting among policy rules, i.e. 

 minimize g Li(g) = {maxi [LOG(g), LP*(g); i = OG, P*]} ( 19 ) 

 In our two-model framework, it is useful to distinguish between two cases in the derivation of the 
minmax rule characterized by (19). These two cases are distinguished on the basis of condition (20): 

 ∃ i ≠ j  such that Lj(fi) < Li (fi)               i, j  =  OG, P* ( 20 )  

where fk is the optimal rule for model k. 

 First, consider the situation where condition (20) does not hold. When substituted in model j, the 
optimal rule from model i yields a loss greater than the minimum loss in model i. As shown in 
Figure 8, this corresponds to a situation where M is negatively sloped as it crosses the 45° line. 

 In this situation, the minmax criterion will select the rule that minimizes the mean loss in the 
two models, subject to the constraint that the losses are equal, i.e. 

 minimize g  0.5 [LOG(g) + LP*(g)] subject to  LOG(g) = LP*(g) ( 21 ) 

Reasons for this conclusion can be drawn from Figure 8. First, the minmax rule must lie on M. 
Otherwise it would be possible to simultaneously reduce the loss in both models, something 
unambiguously desirable on the minmax (or any other plausible) selection criterion. Second, if M is 
negatively sloped when it crosses the 45° line, moving along M away from the 45° line in either 
direction only reduces the loss in one model at the expense of raising the loss in the other model. 
Such an outcome would be undesirable on the minmax criterion, which is concerned only with the 
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maximum loss. Therefore, the minmax rule is associated with the point F in Figure 8, where the 
locus M and the line LOG(g) = LP*(g) intersect. 

 Table 7 reports the minmax rule derived in this way using the parameteraizations of the two 
models reported in Table 1. 

 Second, consider the case where the optimal rule in one model produces a smaller loss when it is 
substituted into the other model, i.e. condition (20) holds. In this situation, the minmax criterion will 
select the optimal rule for model i. The reason is straightforward. By construction, the optimal rule 
for model i will yield the minimum loss for that model. If that minimum loss is nevertheless greater 
than the loss obtained when the rule is used in the other model j, this minimized loss is the 
maximum for the optimal rule over the two models. It therefore meets the minmax criterion. This 
situation is illustrated in Figure 9, which has the distinguishing feature that the locus M is positively 
sloped at the point it cross the positively sloped 45° line (LOG = LP*).  

 (Figure 9 is based on the same parameters as reported in Table 1, with the long-run interest rate 
semi-elasticity of money demand (γ) lowered from 0.25 to 0.1. Having a lower interest rate elasticity 
implies that the interest rate changes to dampen the inflationary implications of monetary shocks in 
the P* model must be greater and thus more destabilizing to output volatility, i.e. the trade off 
between volatilities is exacerbated. In this situation, losses in the P* model are greater than those in 
the OGM and, in consequence, condition (20) holds.) 

 When condition (20) holds, a central bank which has adopted the minmax criterion behaves as if 
it were only concerned about one of the two structural models being entertained. In other words, 
the central bank’s conduct of monetary policy appears to ignore the multiple paradigm framework 
that underlies the analysis presented in this paper, even though its behaviour is firmly rooted in that 
analysis. Moreover, at least to the extent that the higher values of the loss function arise from larger 
variances of the estimated shocks, the central bank will tend to focus on that model which – 
although it cannot be rejected on the basis of the available data – fits the data less well. 

 A number of features of the minmax criterion are noteworthy. 

 First, as parameter values and central bank preferences change, the character of the minmax 
monetary policy rule can change quite dramatically (in a non-linear and potentially non-monotonic 
manner). For example, small changes in central bank preferences may be sufficient to lead to a shift 
from a situation where condition (20) holds to one where it fails. In this case, a central bank that was 
behaving as if only one of the monetary policy paradigms were relevant (i.e. adopting the fully 
optimal rule for one of the two models) could start behaving in a manner that explicitly recognizes 
the multiple paradigm framework (i.e. adopting a rule that is optimal in neither model). In practice, 
this can mean important changes in the monetary policy rule. For example, a central bank behaving 
as if only the OGM were relevant would not accord monetary developments any role in its interest 
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rate decisions. Yet a small change in preferences or model parameters that triggered the failure of 
condition (20) to hold would result in the adoption of a rule where money played a potentially 
important role. 

 Second, since the minmax rule lies on M, it is possible to choose a value of q in the Bayesian 
weighting procedure implied by expression (16) that will replicate the minmax rule. Therefore, it is 
possible to present the minmax criterion as a weighting-based approach, where the weight is not an 
exogenous Bayesian prior probability but rather a weight determined endogenously by the 
parameters of the central bank problem (such that the tangency between M and the line with slope 
(q-1)/q occurs at LOG(g) = LP*(g)). 

4.3 Forecast-based schemes  

 A third approach to combining the analysis undertaken within each of the two paradigms into a 
single interest rate decision relies on the construction of forecasts, in particular forecasts of inflation. 
Statistical theory suggests that any two forecasts can always been combined to obtain a single 
forecast. If monetary policy is formulated on the basis of a single forecast constructed by combining 
the forecasts from each of the two underlying structural models, this provides a straightforward 
approach to address paradigm uncertainty. 

 The logic underlying forecast-based approaches to paradigm uncertainty stems from the 
extensive literature on inflation targeting. This literature typically places an inflation forecast at the 
center of monetary policymaking and views it as a summary (or even sufficient) statistic for policy 
decisions (Batini and Haldane, 1998). However, the label “inflation targeting” has been applied to a 
wide variety of different operational schemes for monetary policy decision-making. Therefore, when 
comparing forecast-based schemes for confronting paradigm uncertainty with the Bayesian and 
minmax approaches discussed above, one should clearly delineate the approach being used. 

 In this section, three different forecast-based approaches are identified. In contrast to the 
approach adopted by Levin, et al. (2001), we view the forecast used to define the rule as a vehicle for 
combining the information and analysis from the two paradigms. Levin, et al. (2001) investigate the 
performance of monetary policy rules that include inflation forecasts as arguments. In assessing 
these rules, they use model-consistent forecasts, i.e., the forecast used to derive the desired interest 
rate is that constructed using the model in which the performance of the rule is being evaluated. In 
contrast, in our exercise, we use the forecasts derived from each of the underlying paradigms or 
models to construct a single central bank inflation forecast. It is this combined forecast (denoted Ft to 
distinguish it from the model consistent forecast Et) that is used to derive the interest rate. The 
resulting interest rate rule is then evaluated in each of the two paradigms (we discuss the weighting 
scheme below).  
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a)   Conditional instrument rules 

 Under the simplest form of forecast-based monetary policy rules, interest rates respond to 
deviations of an inflation forecast from the inflation objective, where the inflation forecast is 
constructed on the basis of an unchanged short-term interest rate (e.g. Batini and Haldane, 1998). 
This rule has the attraction of presentational simplicity: when inflation is expected to be higher than 
desired, short-term interest rates should be raised (and vice versa).  

 In the context of paradigm uncertainty, this rule would have the form: 

 it    =    κC { Ft (∆pt+k|{ij}j=t .. t+k = it-1)    -  ∆p* } ( 22 ) 

where: Ft (∆xt+k) is the forecast at time t of variable x at the horizon t+k; ∆p*  is the inflation 
objective, which (consistent with expression (12)) is normalized to zero; and, κ is the sensitivity to 
which short-term interest rates respond to deviations of inflation forecasts from the this objective. 

b)   Conditional target rules 

 An alternative approach to forecast-based monetary policy rules implies that interest rates are set 
at a level that – if maintained over the forecast horizon – results in a forecast of inflation at the 
objective level at the chosen forecast horizon. 

 In the context of paradigm uncertainty, this rule would satisfy the following condition. 

 choose i t such that Ft (∆pt+k|{ij}j=t .. t+k) = it)   =  ∆p*  ( 23 ) 

We label this approach a conditional target rule since, first, it relates to a conditional forecast of 
inflation (i.e. one that does not embody the implications of the rule itself for future interest rates); 
and, second, the interest rate is defined implicitly rather than as a reaction to deviations of the 
forecast from the target level. 

c)   Unconditional instrument rules 

 Finally, we consider forecast-based rules where short-term interest rates respond to 
unconditional inflation forecasts, i.e. forecasts of inflation which are constructed so as to be 
consistent with the implications of the rule itself. Rules of this type are similar to those investigated 
by Levin, et al. (2001). Note that the approach discussed here differs from that employed elsewhere 
in the literature since the inflation forecast used to determine the path of future interest rates is not 
the model’s best forecast of inflation (i.e. the mathematical expectation of inflation) but rather a 
weighted average of the forecasts produced by the two models being considered. 

 In the context of paradigm uncertainty, this rule would be expressed as: 

 it    =    κU { Ft (∆pt+k)    -  ∆p* } ( 24 ) 
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d) Performance of forecast-based rules in the two paradigm framework 

Tables 8 through 13 show the performance of the forecast-based rules in the two paradigm 
framework. For each of the approaches discussed above, two procedures are investigated: first, an 
(exogenous) weight of 0.5 (corresponding to a uniform Bayesian prior) is used to construct the 
overall forecast to which short-term interest rates respond (results shown in Tables 9, 11 and 13); 
second, the weight on the two underlying forecasts is chosen so as to minimize either the average 
loss across the two models or the maximum loss in either model (Tables 8, 10 and 12),7 where the 
losses in the two models are again characterized by the conventional central bank loss function (12). 

Where the possibility exists, the parameters of the rule are varied so as to minimize the average 
loss. The forecast horizon from which the rule dictates that policy decisions feedback is analysed for 
all rules. The responsiveness of interest rate decisions to deviations of the inflation forecast from 
target is varied for the two instrument rule procedures. In the tables, the best performing rule 
(measured using the average loss across the two paradigms) is shown in bold.  

A number of conclusions can be drawn from this exercise. 

Tables 8 through 13 illustrate a number of results familiar from the extensive literature on 
inflation targeting.  For example, consistent with Batini and Nelson (2000), by lengthening the 
feedback horizon of the forecast the volatility of inflation and output can be reduced (at least over 
some range). Consistent with Levin, et al. (2001), as the feedback horizon is lengthened for 
unconditional forecast-based rules, the system becomes more prone to instability and multiplicity of 
equilibria. More generally, apparently more sophisticated rules (e.g. the adoption of an unconditional 
rather than conditional approach) do not necessarily improve performance. Thus many of the 
attractions and shortcomings of forecast-based rules that have already been widely illustrated in the 
literature carry over to this two paradigm framework. 

More importantly, the forecast-based rules (irrespective of their precise formulation) are not 
efficient (in the sense used in this paper). In other words, the outcomes obtained using such rules do 
not lie on the efficient M locus. Alternative rules exist which can improve upon the outcomes 
obtained using the forecast-based rules in both models under consideration.  

This result follows from two inter-related effects, which are hard to disentangle in practice. First, 
the literature on inflation targeting has amply demonstrated that simple forecast-based rules of the 
type discussed here are, in general, sub-optimal. The inefficiency of such rules in the two paradigm 
framework thus reflects, in part, their general shortcomings. 

Second (and specific to the framework analyzed in this paper), constructing a single 
encompassing forecast by weighting the forecasts from each of the two underlying paradigms is not 
an efficient mechanism for analyzing, combining or responding to the information required for 
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monetary policy decisions. In some circumstances, there may be little difference in the appropriate 
monetary policy response across the two paradigms and thus little need to moderate policy actions 
desirable in one paradigm for fear of causing large disruption in the other paradigm. In other 
circumstances (e.g., following a monetary shock, which is entirely benign in one paradigm but 
inflationary in the other), the appropriate response of monetary policy may be quite different in the 
two models. The efficient approach discussed above – which involves distinct analysis of each of the 
underlying models and cross-checking of the implications of that analysis in all of the models – can 
reveal the trade-offs inherent in this situation.  

5.   Conclusions 

Monetary policy makers face considerable and varied uncertainty. When taking monetary policy 
decisions, policy makers need to be aware of this uncertainty and factor its effects into their interest 
rate choices. 

 In this paper, we investigate the implications of paradigm uncertainty for monetary policy 
making. In particular, we consider – albeit in the context of very simple macroeconomic models – 
the implications of uncertainty concerning the role of monetary aggregates in the transmission 
mechanism of monetary policy. 

 In the face of paradigm uncertainty, a fundamental problem facing monetary policy makers is 
how to combine information revealed – and analysis conducted – in the context of each paradigm 
into a single monetary policy rule that “performs well” across the various paradigms considered. 
After all, the central bank can only have one policy, regardless of the number of paradigms or 
models being entertained. Since the paradigms are, in practice, represented by different (sets of) 
analytical economic models, the issue facing policy makers becomes one of combining analyses from 
different models into a desired level of short-term interest rates. 

 This paper considers three solutions to this problem: weighting-based schemes; forecast-based 
schemes; and, a minmax approach. Consistent with the existing monetary policy literature, each of 
these approaches is characterized as a monetary policy rule. The results of the paper point to the 
following conclusions. 

 First, forecast-based monetary policy rules perform quite poorly even in the very simple two 
paradigm framework introduced in this paper. In particular, they do not yield efficient outcomes, in 
the sense that alternative rules exist which would reduce the loss (a weighted average of inflation and 
output volatility) in both of the paradigms being considered. Second, schemes which weight either 
the individual models or the optimal rules for each of the individual models also do not yield 
efficient outcomes (in the same sense). The explanation of these results stems from the following. 
Policy makers need to consider the implications of policy decisions in each of the two paradigms 
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when coming to an interest rate decision. This requires a framework for analysis with two features. It 
must keep the paradigms sufficiently distinct for an independent assessment of the performance of 
policy choices in each paradigm to be made (thereby ruling out procedures focused on the evolution 
of a single, encompassing central bank inflation forecast). Yet, at the same time, the framework must 
be sufficiently integrated for the implications of any specific policy choice in all of the paradigms or 
models to be considered (thereby ruling out schemes that mechanically weight the two models or 
the optimal rule for each of the two models). 

 The third result follows naturally. Efficient rules in the face of paradigm uncertainty are derived 
from procedures that maintain the distinctiveness of the two paradigms and yet integrate analysis of 
the losses that rules give in each of the paradigms. Within our framework the resulting rule implies 
that the interest rate should respond also to monetary developments. 

 This paper identifies a “set of rules” that meet this criterion and are thus efficient in the sense 
that no alternative rule exists that can simultaneously lower the loss obtained in both of the 
paradigms being entertained. Policy makers should select a rule within this “set of rules” according 
to their willingness to specify priors on the likelihood of the two paradigms. If they do specify 
weights, a weighted average of the loss function for the alternative paradigms can be minimised. 
Such a procedure allows for a set of rules corresponding to the efficient set of rules. We can label 
this approach the “Bayesian policy maker”. By contrast, if the policy maker is unable or unwilling (or 
if it proves difficult within a collegial decision-making body) to specify probability distributions, 
he/she can adopt a minmax procedure. This allows for selecting a specific rule from the efficient set, 
one that avoids potentially large losses in one of the paradigms at the expense of a somewhat higher 
(ex ante) average loss across the two paradigms. We have also shown that this latter approach can be 
formulated in terms of endogenous weights. 

 The paper therefore suggests the following approach to the design of monetary policy in the face 
of paradigm uncertainty. Incoming data should be analysed in the context of different models of the 
economy, each representative of a plausible paradigm of the monetary policy transmission 
mechanism. For the same set of incoming data, each model will have different implications for the 
appropriate setting of interest rates. Policy makers should evaluate the implications of one 
paradigm’s interest rate in other paradigms. In taking the final monetary policy decision, policy 
makers need to evaluate, on the one hand, the magnitude of the losses associated with the policy 
choice in each of the paradigms against, on the other hand, the plausibility (in case of a Bayesian 
policy-maker) or the worst case scenario (in case of a minmax policy maker) entailed by each of the 
paradigms that the policy framework entertains. 
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 Figure 1a Impulse responses for the output gap model (OGM) 
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 Figure 1a Impulse responses for the OGM (continued) 
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 Figure 1b Impulse responses for the P -star model (P*) 
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 Figure 1b Impulse responses for the P* model (continued) 
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Figure 2a: Taylor curve for the output gap model (OGM) 
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Figure 2b: Taylor curve for the P star model (P*) 
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Figure 2c: Comparison of Taylor curves  
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Figure 3a: Performance of optimal P* rule in the OGM 
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Figure 3b: Performance of optimal OGM rule in the P* model 
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Figure 4 : Locus of efficient LOG and LP* combinations 
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Figure 5 : Locus of efficient LOG and LP* combinations, M 
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Figure 6 : The Bayesian rule 
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Figure 7 :  LOG and LP* combinations associated with weighted models and weighted optimal rules 
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Figure 8 :  Minmax rule 
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Figure 9 :  Alternative case for the minmax rule (recalibrate γ = 0.1) 
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Table 1: Calibrated values for the model parameters 
 
 

Parameter Calibrated value Economic interpretation 

λ 0.9 Output persistence. 

δ 0.1 Real interest rate elasticity of aggregate demand. 

β  0.1 Sensitivity of inflation to the output gap. 

φ 0.6 Persistence of real monetary growth. 

υ 0.1 Error correction coefficient in money demand equation. 

γ 0.25 Long-run interest rate elasticity of money demand. 

ω 0.5 Weight on lagged inflation in P* inflation equation. 

µ 0.2 Error correction coefficient in P* inflation equation 

 

ΣOG = ΣP* 


















0000
0100
0010
0001

 

Covariance matrix of the structural economic (demand, 
supply and money demand) shocks. (For simplicity, a 
diagonal matrix with unit variances is assumed for both 
models.) 
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Table 2: Coefficients and performance of optimal rules with ψ = 0.5 
 
 
 Output gap model P star model 

Coefficient in optimal rule on: 

(y - y*)t 

 

10.051 

 

7.358 

∆pt 10.512 8.472 

(m – p)t 0 15.386 
(m – p)t-1 0 -12.118 

Output variance 6.044 8.205 
Inflation variance 6.574 9.468 

Implied loss, L 6.309 8.836 
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Table 3: Performance of optimal rule for model i in model j  i,j = OG, P* 
 
 
 Optimal rule for output 

gap model in the P* model 
Optimal rule for P* model 
in the output gap model 

Output variance 11.609 7.381 
Inflation variance 13.737 11.040 

Implied loss, L 12.673 9.210 

For reference: Performance of optimal rule for P* 
model in P* model 

Performance of optimal rule for 
output gap model in OGM 

Output variance 8.205 6.044 
Inflation variance 9.468 6.574 

Implied loss, L 8.836 6.309 
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Table 4: Coefficients and performance of Bayesan rule weighting loss functions (q = 0.5) 
 
 
 Bayesian rule weighting 

loss functions (q = 0.5) 
OGM 

optimal rule 
P* optimal 

rule 

Coefficient in weighted rule on: 

(y - y*)t 

 

9.572 

 

10.051 

 

7.358 

∆pt 9.481 10.512 8.472 

(m – p)t 9.525 0 15.386 
(m – p)t-1 -8.190 0 -12.118 

Loss in OGM 7.096 6.309 9.210 
Loss in P* model 9.456 12.673 8.836 

Mean loss 

Maximum loss 

8.276 
9.456 

9.491 
12.673 

9.023 
9.210 
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Table 5: Coefficients and performance of Bayesan rule weighting models (q = 0.5) 
 
 
 Bayesian rule weighting 

models (q = 0.5) 
OGM 

optimal rule 
P* optimal 

rule 

Coefficient in weighed rule on: 

(y - y*)t 

 

8.541 

 

10.051 

 

7.358 

∆pt 9.091 10.512 8.472 

(m – p)t 8.344 0 15.386 
(m – p)t-1 -6.659 0 -12.118 

Loss in OGM 7.226 6.309 9.210 
Loss in P* model 9.459 12.673 8.836 

Mean loss 

Maximum loss 

8.343 
9.459 

9.491 
12.673 

9.023 
9.210 
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Table 6: Coefficients and performance of Bayesan rule weighting optimal rules (q = 0.5) 
 
 
 Bayesian rule weighting 

rules (q = 0.5) 
OGM 

optimal rule 
P* optimal 

rule 

Coefficient in weighted rule on: 

(y - y*)t 

 

8.705 

 

10.051 

 

7.358 

∆pt 9.492 10.512 8.472 

(m – p)t 7.693 0 15.386 
(m – p)t-1 -6.059 0 -12.118 

Loss in OGM 7.059 6.309 9.210 
Loss in P* model 9.623 12.673 8.836 

Mean loss 

Maximum loss 

8.341 
9.623 

9.491 
12.673 

9.023 
9.210 
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Table 7: Coefficients and performance of minmax rule 
 
 
 

Minmax rule  OGM 
optimal rule 

P* optimal 
rule 

Coefficient in minmax rule on: 

(y - y*)t 

 

7.554 

 

10.051 

 

7.358 

∆pt 8.760 10.512 8.472 

(m – p)t 14.987 0 15.386 
(m – p)t-1 -12.014 0 -12.118 

Loss in OGM 8.844 6.309 9.210 
Loss in P* model 8.844 12.673 8.836 

Mean loss 

Max loss 

8.844 
8.844 

9.491 
12.673 

9.023 
9.210 
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Table 8 Conditional forecast-based instrument rules  
 
 

  Forecast horizon 

  1 2 3 4 5 6 

Coefficient on forecast 2.158 3.205 7.326 6.638 5.238 4.342 

Weight on OGM forecast 0 0 0.021 0.303 0.518 0.697 

Loss in OGM 12.483 10.975 10.300 9.098 8.789 8.866 

Loss in P* model 22.003 16.201 11.805 11.141 12.111 13.661 

Mean loss 17.243 13.588 11.053 10.119 10.450 11.263 

 

 

Mean 

Maximum loss 22.003 16.201 11.805 11.141 12.111 13.661 

Coefficient on forecast 1.858 2.612 8.562 5.828 4.255 3.533 

Weight on OGM forecast 0 0 0 0.063 0.196 0.432 

Loss in OGM 13.918 11.730 10.508 10.410 11.265 11.453 

Loss in P* model 21.497 15.950 11.685 10.410 11.265 12.900 

Mean loss 17.708 13.840 11.097 10.410 11.265 12.176 

 

 

Max 

Maximum loss 21.497 15.950 11.685 10.410 11.265 12.900 
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Table 9 Conditional forecast-based instrument rules with weight on forecasts set exogenously (q = 0.5) 
 
 

  Forecast horizon 

  1 2 3 4 5 6 

Coefficient on forecast 1.967 2.490 12.451 7.572 5.170 3.703 

Weight on OGM forecast 0.5 0.5 0.5 0.5 0.5 0.5 

Loss in OGM 12.865 10.791 9.127 8.333 8.892 10.625 

Loss in P* model 24.830 20.197 16.239 12.494 12.014 12.941 

Mean loss 18.848 15.494 12.683 10.414 10.453 11.783 

 

 

Mean 

Maximum loss 24.830 20.197 16.239 12.494 12.014 12.941 

Coefficient on forecast 1.729 2.099 14.098 7.909 5.238 3.718 

Weight on OGM forecast 0.5 0.5 0.5 0.5 0.5 0.5 

Loss in OGM 14.321 11.905 9.484 8.391 8.908 10.630 

Loss in P* model 24.303 19.792 16.104 12.476 12.010 12.939 

Mean loss 19.312 15.848 12.794 10.433 10.459 11.785 

 

 

Max 

Maximum loss 24.303 19.792 16.104 12.476 12.010 12.939 
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Table 10 Conditional forecast-based target rules (setting rate to put forecast at target) 
 
 

  Forecast horizon 

  1 2 3 4 5 6 7 

Weight on OGM forecast 0.390 0.201 0.204 0.267 0.364 0.467 

Loss in OGM 45.194 13.431 10.077 8.957 8.562 8.500 

Loss in P* model 44.917 15.688 11.411 10.395 10.710 11.580 

Mean loss 45.055 14.560 10.744 9.676 9.636 10.040 

 

 

Mean 

Maximum loss 

 

Not feasible since 
one step ahead 

inflation forecast is 
predetermined. 

45.194 15.688 11.411 10.395 10.710 11.580 

Weight on OGM forecast 0.396 0 0.023 0.077 0.100 0.125 

Loss in OGM 45.056 14.518 10.883 9.840 10.002 10.803 

Loss in P* model 45.058 15.089 10.886 9.838 10.005 10.806 

Mean loss 45.057 14.083 10.885 9.839 10.004 10.805 

 

 

Max 

Maximum loss 

 

Not feasible since 
one step ahead 

inflation forecast is 
predetermined 

45.058 15.089 10.886 9.840 10.005 10.806 
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Table 11 Conditional forecast-based target rules (setting rate to put forecast at target) with exogenously chosen weight (q = 0.5) 
 
 

  Forecast horizon 

  1 2 3 4 5 6 7 

Weight on OGM forecast 0.5 0.5 0.5 0.5 0.5 0.5 

Loss in OGM 43.027 12.216 9.058 8.127 8.004 8.336 

Loss in P* model 48.662 19.193 13.890 12.036 11.562 11.763 

Mean loss 45.844 15.704 11.474 10.082 9.783 10.050 

 

Mean /  

Max 

Maximum loss 

 

Not feasible since 
one step ahead 

inflation forecast is 
predetermined. 

48.662 19.193 13.890 12.036 11.562 11.763 
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Table 12 Unconditional forecast-based instrument rules 
 
 

  Forecast horizon 

  1 
same as conditional since one step ahead 

inflation forecast is predetermined 
2 

3 
longer horizons induce indeterminacy 

 or multiplicity 

Coefficient on forecast 2.158 3.091 ˜  77  
(induces high interest rate volatility; 
larger value induce indeterminacy). 

Weight on OGM forecast 0 0 0 

Loss in OGM 12.483 11.19 Asymptote ˜  11.4 

Loss in P* model 22.003 16.461 Asymptote ˜  16.4 

Mean loss 17.243 13.795 Asymptote ˜  13.9 

 

 

Mean 

Maximum loss 22.003 16.461 Asymptote ˜  16.4 

Coefficient on forecast 1.858 2.532 ˜  77  
(induces high interest rate volatility; 
larger value induce indeterminacy). 

Weight on OGM forecast 0 0 0 

Loss in OGM 13.918 11.957 Asymptote ˜  11.4 

Loss in P* model 21.497 16.184 Asymptote ˜  16.4 

Mean loss 17.708 14.070 Asymptote ˜  13.9 

 

 

Max 

Maximum loss 21.497 16.184 Asymptote ˜  16.4 
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Table 13 Unconditional forecast-based instrument rules with exogenously chosen weight (q = 0.5) 
 
 

  Forecast horizon 

  1 
same as conditional since one step ahead 

inflation forecast is predetermined 
2 

3 
longer horizons induce indeterminacy 

 or multiplicity 

Coefficient on forecast 
1.967 2.450 As large as possible (induces 

increasing interest rate volatility). 

Weight on OGM forecast 0.5 0.5 0.5 

Loss in OGM 12.865 10.914 Asymptote ˜  12.2 

Loss in P* model 24.830 20.403 Asymptote ˜  18.3 

Mean loss 18.848 15.658 Asymptote ˜  15.2 

 

 

Mean 

Maximum loss 24.830 20.403 Asymptote ˜  18.3 

Coefficient on forecast 
1.729 2.071 As large as possible (induces 

increasing interest rate volatility). 

Weight on OGM forecast 0.5 0.5 0.5 

Loss in OGM 14.321 12.066 Asymptote ˜  12.2 

Loss in P* model 24.303 19.984 Asymptote ˜  18.3 

Mean loss 19.312 16.025 Asymptote ˜  15.2 

 

 

Max 

Maximum loss 24.303 19.984 Asymptote ˜  18.3 

 



 
 
 
 

  

Notes 
 
1  The opinions expressed in this paper are those of the authors and do not necessarily reflect the views of the 

European Central Bank. We are very grateful to Klaus Masuch and Hans-Joachim Klöckers for their helpful 
comments. The paper was originally prepared for the central bank workshop on monetary policy rules to be held at 
the ECB in Frankfurt on 11-12 March 2002. 

2  The difficulty of rejecting models on an empirical basis will be exacerbated by typical econometric concerns, such as 
short data samples and multi-colinearity. 

3    For an early application of this approach to the design of monetary policy in presence of model uncertainty, see for 
example Becker, et al. (1986).  

4  In the context of such forward-looking, New Keynesian models, the correct measure of inflationary pressure us 
given by the gap between real wages and the marginal product of labour. Under some conditions, this gap can be re-
written as an output gap measure.  

5  The passive role of money within this framework is revealed by the block recursive structure of expression (5). In 
other words, the upper right elements of the matrix AOG are zero. 

6  In fact, for the remainder of the paper, we assume that M is smooth, continuous and convex to the origin (although, 
since we rely on numerical methods, we do not prove this). Some of the results obtained below rely on these 
assumptions. 

7  Note that this does not imply that the forecast from which policy decisions feedback is necessarily the optimal 
inflation forecast.  


