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 Many suppose that democracy is an ethos which requires, inter alia, a degree of 

economic equality among citizens.  In contrast, we conceive of democracy as ruthless 

electoral competition between groups of citizens, organized into parties.  We inquire 

whether such competition, which we assume to be concerned with distributive matters, 

will engender economic equality in the long run. 

 The society consists of an infinite sequence of generations, each comprising 

adults and their children.  Adults care about family consumption and the future wages of 

their children, which are determined by educational policy and parental human capital.  A 

given generation is characterized by the distribution of human capital of its adults.  

Parties form and propose policies to redistribute income among households, and to invest 

in the education of children; the educational policy that is victorious determines the 

distribution of human capital in the next generation of adults.   

The policy space on which parties compete is very large.  A political equilibrium 

concept is proposed which determines two parties endogenously, and their proposed 

policies in political competition.   One party wins the election (stochastically).  This 

process determines a sequence of human-capital distributions over time. 

 We show that, whether the limit distribution of human capital is one of equality 

depends upon the nature of intra-party bargaining.  If parties are highly ideological, then 

equality is obtained in the long-run, while if they are opportunist, it is not.  This outcome 

is starkly different from what occurs in a unidimensional Downsian model, which, we 

argue, shows the necessity of this more complex analysis. 
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§1   Introduction 
 

Among types of political system, the one most identified in contemporary western 

society with the production of justice is democracy.  Even on the political left, democracy 

has largely replaced socialism as the regime desideratum.  Just as those socialists who 

were dissatisfied with aspects of Soviet society claimed that the Soviet regime was not 

real socialism, so those who continue to be dissatisfied with, for example, the American 

system, now argue that it is not an instance of real democracy.  Real democracy is 

thought to be a political system in which genuine representation of all citizens – and even 

justice – is achieved. 

 The identification of democracy with justice is not simply a practice of many 

political theorists: perhaps the most important aspect of political transformation in the 

world in the last fifty years has been the toppling of authoritarian regimes, and their 

replacement with democratic ones.  Just as socialism was a powerful movement in the 

first half of the twentieth century – by 1950, fully one-third of the world’s peoples lived 

under regimes that described themselves as socialist – so democracy has been the 

                                                 
•  Departments of Political Science and Economics, Yale University.  This paper originated in a 

series of discussions with Ignacio Ortuño-Ortin.  His ideas and critique have been immensely 

valuable.  I am  indebted to Roger Howe for many mathematical discussions, and to Herbert 

Scarf for teaching me how to solve infinite-dimensional optimization problems without 

recourse to optimal control theory.   John Geanakoplos, Joaquim Silvestre, and Karine Van 

der Straeten offered valuable critique at a later stage. 
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massively appealing political doctrine in, let us say, the period since 1960. And as it was 

an error of socialists to identify socialism with All Good Things, so now it is an error of 

democrats to identify democracy with All Good Things1.  The most common example of 

this fallacy is when some say that regime X cannot be a democracy, because it sustains 

Bad Thing Y (oppression of women, abrogation of civil rights, etc.). But if democracy is 

defined as a set of political institutions, rather than as an ethos, then the correct approach 

is to study what those institutions entail.  Perhaps, for example, both the oppression of 

women and its absence can co-exist with democracy. 

 In this article, I undertake a study of this kind and ask whether democracy, 

understood as a system of political competition between parties that represent different 

coalitions of citizens,  will engender  economic equality.  I focus upon the role of 

education as an instrument for reducing the differentials in human capital that would 

otherwise obtain, and  ask whether democracy  will entail the long-term equalization of 

human capital through political decisions concerning educational investment. 

 We model the following society, one which reproduces itself over many 

generations.  At the initial date, there are households led by adults (parents) characterized 

by a distribution of human capital, that is, capacities to produce income.  Each parent has 

one child.  The human capital the child will have, when next period he has become an 

adult, is a monotone increasing function of his parent’s level of human capital and the 

                                                                                                                                                 
 
1 There are many people who identify democracy with justice.  For instance, Adolfo Perez 

Esquivel, a Nobel Peace Prize laureate, recently said, “The vote does not define democracy.  

Democracy means justice and equality. [Italics added –JER] ” (The Daily Journal [Caracas], July 

12, 2001) 
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amount that is invested in his education.   This relationship is deterministic, and describes 

the educational production function for all children. Thus,  more investment is needed to 

bring a child from a poor (low human capital ) family up to a given level of human 

capital than a child from a richer family.  All parents have the same utility function:  a 

parent cares about her household’s consumption (that is, her after-tax income), and the 

earning power her child will have, as an adult.  We will, for simplicity, assume that adults 

do not value leisure. 

 Educational finance is, until section 5, purely public.  The polity of adults, at each 

date, must make four political decisions: how much to tax themselves, how to split the 

tax revenues between a redistributive budget for households’ current consumption and 

the educational (investment) budget, how to partition the budget for redistribution among 

adults, and how to target the educational budget to investment in particular children, 

according to their type (that is, their parents’ human capital).  Once these political 

decisions are implemented, a distribution of human capital is determined for the next 

generation.  When the present children become adults, characterized by that distribution 

of human capital, they face the same four political decisions.  We wish to study the 

asymptotic distribution of human capital of this dynamic process. 

 In the society we have described, a child is characterized by the family into which 

he is born, for his capacity to transform educational investment into future earning power 

is determined by his family background, proxied by his parent’s human capital.  We 

imagine that the transmission of ‘culture’ to the child is indicated by the parent’s human 

capital endowment.    The child’s capacity successfully to absorb educational investment, 

and transform it into human capital, as a circumstance beyond his control, and so a 
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society of this kind that wished rapidly to equalize opportunities for all children would 

compensate children from poorer families with more educational investment.  Equality of 

opportunity will be achieved when all adults have the same human capital, for that 

means, as children in the previous generation, the compensation for disadvantageous 

circumstances was complete2.  In the real world, equality of opportunity does not require 

equalizing outcomes in this way, because people may remain responsible for some aspect 

of their condition, even after the necessary compensation for disadvantage has been 

made.  But in our model there is no such element of personal responsibility, and so, if we 

take equality of opportunity as our conception of justice, then justice will have been 

achieved exactly when the wage-earning capacities of all adults are equal.   

One might object that it is here sufficient to equalize (post-fisc) incomes for 

justice.  But it may well be the case that individuals derive welfare not only from 

consumption, but from their human capital, and so we insist that this more demanding 

condition of human-capital equality is the one of interest.   Indeed, if one’s human capital 

is an enabler of self-realization, then it is surely the case that justice would require a 

concern with levels of human capital in a society, not simply income levels. 

 We will stipulate a democratic process for solving society’s political problems, at 

each generation.  Our question becomes:  How close will the asymptotic distribution of 

human capital engendered by this democratic process be to an equal distribution? 

 The focus of our model will be on that democratic process.  We employ a concept 

of democratic political equilibrium that takes as data the distribution of preferences of the 

polity over a given policy space, and produces as output an endogenous partition of the 

                                                 
2 See Roemer (1998) for the theory of equality of opportunity, based upon social compensation 
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polity into two political parties, a policy proposal by each party, and a probability that 

each party will win the election.  We suppose that an election occurs, and the policy of 

the victorious party is implemented.  Our procedure will be to begin with a distribution of 

adult human capital at date 0, which will determine the distribution of adult preferences 

at date 0, and  initialize the stochastic dynamic process.   

 Although we have described the political choice as consisting of four independent 

decisions, we will in fact model the political problem as one on an infinite dimensional 

policy space.  That policy space, denoted T , will consist of pairs of functions (ψ,r) 

where ψ(h)  is the after-tax household income of an adult with human capital h, and r(h)  

is the public educational investment in a child from a family where the parent has human 

capital h.  These functions are restricted only to be continuous, to jointly satisfy a budget 

constraint, and to satisfy an upper and lower bound on their derivatives, when the 

derivatives exist.  Thus, the present analysis marks a substantial technical advance over 

analyses in political economy that must limit their scope to unidimensional policy spaces, 

or policy spaces of small dimension.  I argue that the advance is not merely technical.  It 

is surely artificial to restrict a democratic polity’s choice of policies to ones with simple 

mathematical properties, such as linearity.  Our ability to solve the political problem with 

no such restrictions means that we are able to model the democratic struggle as ruthlessly 

competitive: no holds, in the sense of unmotivated restrictions on the nature of policy 

proposals, are barred. 

                                                                                                                                                 
for disadvantageous circumstances. 
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 Indeed, we show below that the analysis on a policy space of large dimension 

gives qualitatively different results from the standard, uni-dimensional Downsian 

analysis. 

 The political equilibrium concept is ‘party unanimity Nash equilibrium with 

endogenous parties (PUNEEP)’  In two recent articles, I introduced the concept of ‘party 

unanimity Nash equilibrium (PUNE), (Roemer [1999, 1998]).  The extension to ‘PUNE 

with endogenous parties’ is introduced in Roemer (2001, Chapter 13).  The endogenous-

party aspect is grafted from a model of Baron (1993). 

 It is probably fair to say that most articles in political economy propose a 

relatively sophisticated model of the economy, and a trivial model of politics (standardly, 

political equilibrium consists in both parties’ proposing the median voter’s ideal point, or, 

more generally, a Condorcet winner in the policy space).  Our approach here is just the 

opposite: the economy is very simple, but the politics are quite complex.  Our first 

justification for this complexity is that, without it, we cannot solve the problem of 

political equilibrium with multi- and even infinite dimensional policy spaces, when 

Condorcet winners do not exist.   Our second justification, for the problem at hand, is that 

our focus is upon the workings of democracy, and therefore, a careful articulation of 

democratic institutions is appropriate.  Of course, a more highly articulated model of the 

economy would also be desirable, if tractability were not sacrificed.  

 In section 2, the definition of political equilibrium that we will use, and a 

companion concept of quasi-equilibrium, are presented.  In section 3, we characterize the 

policies in the political equilibria of the model.  Section 4 studies the dynamics.  Section 

5 relaxes the assumption that all educational investment is public.  Section 6 analyzes the 
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dynamics of income distribution in a unidimensional, median-voter model.  Section 7 

presents some simulations of dynamics.  Section 8discusses the results, and concludes.  

All proofs of propositions are gathered in the appendix. 

 

§2 Party unanimity Nash equilibrium with endogenous parties (PUNEEP) 

 In this section, I define PUNEEP and a related concept3. 

 Let H  be a set of voter types, where h ∈ H is distributed according a to 

probability measure F  in the society in question.  Let T  be a set of policies.  There is a 

function v:T × H → R  which represents the preferences of types over policies; thus 

v(⋅,h)  is the utility function of type h  on T .  For each h , we assume that v(⋅,h)  is a von 

Neumann-Morgenstern utility function for lotteries on T . 

 Let t1,t2 ∈ T  be two policies; we next define π(t1,t2 ) , the probability that policy t1 

defeats policy t2.  Our datum is a function π*:[0,1] → [0,1], such that π*(0) = 0,π* (1) = 1, 

and π* is strictly increasing on [0,1]. 

 Let Ω(t1,t2)  be the set of types who prefer t1 to t2  and  I(t1,t2 )be the set of types 

who are indifferent between t1 and t2 .  Then we define, pro tem4: 

π(t1, t2 ) = π* (F(Ω( t1,t2 )) +
1
2

F(I(t1,t2 ))).   (2.1) 

 In other words, F(Ω(t1,t2)) +
1
2

F(I(t1,t2))  is the mass of voters who in principle 

will vote for t1 — but perhaps some voters will make mistakes or perhaps F  is measured 

                                                 
3 For a more relaxed and carefully motivated presentation of PUNE and PUNEEP, see Roemer 

(2001, Chapters 8 and 13). 
4 To be modified in Remark 2, below. 
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imperfectly.  Equation (2.1) says that the probability that t1 defeats t2 is an increasing 

function of the ‘expected’ vote for t1. 

 A party structure is a partition of H  into two elements.  We specialize, now, to 

the case H = R+ , and further specialize by requiring that both elements in a party 

structure be intervals:  thus a party structure is characterized by a pivotal type 

h*,  with L = [0,h *) and R = [h*,∞). We call the two parties Left (L) and Right (R) . 

 Associated with a party is a utility function, which is the average of its members 

utility functions. 

 Thus 

vL( t) = v( t,h)dF(h)
0

h*

∫

vR (t) = v(t,h)dF(h)
h*

∞

∫

 

 

 
 

 

 
 

 (2.2) 

(We drop a multiplicative constant.)  The utility functions ν(⋅,h) are assumed to be 

cardinally measurable and unit comparable (CUC), so that averaging them makes sense. 

 All parties contain three factions of decision makers: opportunists, reformists, and 

militants.  (These factions are not to be identified with particular citizen types.  They are, 

if you will, of measure zero in the population.)  Each faction possesses a real-valued 

payoff function defined on T × T .  The payoff functions of the three factions in Left are 

defined by: 

LΠOpp t1,t2( )= π t1, t2( )
LΠRef t1, t2( )= π t1,t2( )vL t1( )+ 1− π t1,t2( )( )vL t2( )
LΠMil t1,t2( )= vL( t1)

 

 
  

 
 
 

 (2.3) 
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with an analogous definition for Right’s three factions.  The three factions are interested, 

respectively, in winning (opportunists), party-member welfare (reformists), and publicity 

(militants).   

 

Definition 1.  A party unanimity Nash equilibrium with endogenous parties (PUNEEP) is 

a party structure (L,R) given by L = [0,h *)  and R = [h*,∞) with h* > 0 , and a pair of 

policies tL, tR ∈ T  such that  

(A) there is no policy t ∈ T such that 

 LΠJ ( t,tR ) ≥ LΠ J tL , tR( ),  for J = O,R,M  

 with at least one of these inequalities strict; 

(B) there is no policy t ∈ T  such that 

 RΠ J (tL ,t) ≥ RΠJ (tL , tR), for J = O,R,M  

 with at least one of these inequalities strict; 

(C)      
h ∈ L ⇒ v(tL ,h) ≥ v(tR ,h)
h ∈ R ⇒ v(tR,h) ≥ v(tL ,h)

. 

 The three payoff functions of a parties’ factions each represent a complete order 

on T × T .  Their intersection represents a quasi−order on T × T .  A PUNEEP is a Nash 

equilibrium of the game played by these two quasi−orders, with the additional 

requirement (C).  Requirement (C) was initially proposed by Baron (1993), in another 

context, as modeling the stability of a party structure. 

Remark 1.  It is easily shown that the reformists are gratuitous in definition 1.  That is, if 

we eliminate the reformist factions, we do not alter the set of equilibria.  But notice, once 

this is done, we never need mention expected utility, since only the reformists calculate 
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that.  It thus suffices that {v(⋅,h) h ∈ H} be a profile of CUC utility functions (i.e., they 

need not represent preferences over lotteries).  

Remark 2.  It is now convenient to alter the convention on how  voters who are 

indifferent between the policies they face, vote, in the presence of parties.  When parties 

are present, we will say that a voter who is indifferent between policies votes for the 

policy of his party.  (Recall that each citizen is a member of one party: this is part of the 

description of a political environment.)   Thus, formally, we now revise the definition of 

π to: 

π(tL , tR ) = π* (F(Ω( tL tR )) + F(L ∩ I( tL,tR ))) .                   (2.1’) 

Remark 3.  In Roemer (2001, Chapter 8), it is shown that if sufficient convexity is 

present, then every PUNEEP can be viewed as the outcome of generalized Nash 

bargaining between the militant and opportunist factions of each party, given the other 

party’s proposal.  There is, in general, a two dimensional manifold of PUNEEP.  Each 

one is characterized by specifying the relative bargaining strengths of the two active 

factions in each party − thus, two positive numbers.  Thus, parties compete with each 

other à la Nash equilibrium, while internal factions bargain with each other à la Nash 

bargaining.  The PUNEEP concept thus owes its origins doubly to John Nash. 

 

Remark 4.   There is another story (besides the three-faction story) that leads to the same 

equilibrium concept.  Suppose there are two factions of decision  makers in a party -- the 

opportunists, and those whom we may call the guardians.   The opportunists (as above) 

wish to maximize the probability of their party’s winning.  The guardians insist that the 

policy chosen guarantee at least some given level of utility to their constituents: the 
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guardians in party L, for instance, require that the inequality vL( tL) ≥ kL  be satisfied, for 

some number kL.  Subject to this constraint, and facing the opposition’s policy, the 

opportunists choose a policy to maximize the probability of victory. 

 The reader can easily observe that the guardians are behaving just like the 

militants, in the original formulation, and it therefore follows from Remark 1 that 

PUNEEPs are exactly equilibria of this model, as well.     

 The opportunist-guardian story is really one of bounded rationality.  There are no 

longer any reformists or any militants.  Reformism, after all, requires sophisticated 

preferences, ones which can rank not only policies, but lotteries over policies.    Hence, 

the story of this Remark may be a more appealing way to ‘rationalize’ the PUNEEP 

concept.  The multiplicity of PUNEEPs is now seen to be associated with various values 

of the ordered pair (kL ,kR ) .  The two-dimensionality of the equilibrium manifold is again 

apparent. 

 We now further specialize to the case that F  has a continuous, strictly increasing 

distribution function, F,  on R+ .  

 We next define an auxiliary notion that is useful in the analysis. 

Definition 2. A quasi-PUNE is an ordered pair (h*, y) ∈ H × R  and a pair of policies 

tL, tR ∈ T , such that v(tL ,h*) = y = v( tR,h*) and: 

2A. tL  solves 

max v( t,h) d F
0

h*

∫ (h) 

 subject to 

t ∈ T  

h ∈ [0,h*) ⇒ ν(t,h) ≥ ν(tR ,h)  (L0) 
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v(t,h*) ≥ y  (L1) 

2B. t R  solves 

max v( t,h) dF
h*

∞

∫ (h) 

 subject to  

t ∈ T  

h ∈ [h*,∞)⇒ v(t,h) ≥ v(tL ,h)  (R0) 

v(t,h*) ≥ y  (R1) 

2C. Constraints (L1) and (R1) bind at tL and tR  respectively. 

 We have: 

Proposition 1.  Let v  be continuous in h .  If (tL ,tR ,h* ) is a PUNEEP, then (tL ,tR ,h*, y)  is 

a quasi-PUNE, with y = v(tL ,h *) . 

Proof: See appendix. 

 The converse of Proposition 1 is not true: there may be quasi−PUNEs that are not 

PUNEEPs.  For if (tL ,tR ,h*, y)  is a quasi-PUNE, it is possible that there exists a policy t 

which improves the payoff of both Left’s militants and opportunists, by assembling a set 

of voters who favor t over tR that is disconnected and does not contain h* . 

 We can give an alternative, conceptual definition of quasi-PUNE, which may be 

helpful.  Consider the definition of PUNEEP (definition 1); let (h*,tL , tR )  be a candidate 

PUNEEP.   Consider the opportunists in Left who are ‘testing’ the policy tL : they are 

searching for a policy that gives them a greater probability of victory than π(tL ,tR ) and 

delivers at least the same average utility to L’s  members as does tL.   If they find such a 

policy, then  (h*,tL , tR )  is not a PUNEEP.  Indeed, there may be such a policy, call it t*, 
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and the set of types that favor t* over tR might not include L.   This would still show that 

(h*,tL , tR )  is not a PUNEEP.  Now suppose that we restrict the opportunists of L to 

looking for policies t that increase their probability of victory when played against tR, and 

do not lower the average utility of L,  and such that the coalition that favors t over tR  

includes L.   (We similarly require the analogous additional condition of Right’s 

opportunists. )  If (h*,tL , tR )  survives this stronger deviation test, then it is (precisely) a 

quasi-PUNE.  Because the test for quasi-PUNE is stricter than the test for PUNEEP, the 

set of quasi-PUNEs includes the set of PUNEEPs. 

 We can now give a preview of our strategy.  In our politico-economic 

environment, we can fully characterize the set of quasi-PUNEs:  the important and useful 

fact is that we can compute quasi-PUNEs without recourse to fixed point theorems, using 

only  optimization methods.  We will further note that the set of PUNEEPs is a 

non−empty subset of the set of quasi-PUNEs.  We then conduct our dynamic analysis 

assuming that each generation’s political equilibrium is some quasi-PUNE.  Whatever we 

conclude will hold a fortiori for societies whose political equilibria are genuine ones, that 

is, PUNEEPs.  In this manner we avoid ever having to solve the intractable problem of 

characterizing precisely the set of PUNEEPs. 

 

§3 Equilibrium at one date 
 
Throughout this section, we analyze the society at one date. 
 
A.  The politico−economic environment 
 

(i)  Preferences 
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A typical society, in our problem, consists of a continuum of adult types, each 

characterized by her human capital h , where h  is distributed according to a probability 

measure F , whose mean is denoted µ , and whose support is the positive real line.  We 

denote the distribution function (CDF) of F by F.  Each adult has one child.  Adults care 

about their household’s consumption, and their child’s (future) human capital. 

We assume: 

u(x, ′ h ) = log x + γlog ′ h ,  (3.1) 

where x  is the household’s consumption, or after-tax income, and ′ h  is the child’s 

(future) human capital.    Zero consumption is minimal household consumption.  Note 

there is no preference for leisure5. 

(ii) Technology 

 If r  is invested in the education of a child whose parent is of type h  then the 

child’s future human capital will be 

′ =h h rb cα  (3.2) 

where α,b,c  are positive constants6.    

 b  is the elasticity of child’s human capital w.r.t. parental human capital and c  is 

the elasticity of child’s human capital w.r.t. educational investment. Think of the 

influence of the parent’s human capital on the child’s human capital as operating through 

                                                 
5 As I noted in the introduction,  we may think of adults as caring about their own human capital 

as well as their income.  But since their human capital is fixed by the time they make decisions, 

we need not include the utility it generates in the utility function.   A utility function of this type 

is used elsewhere -- see, for example, Banerjee and Newman (1993) and Zalor and Zeira (1993). 
6 A production function of this type is employed in Becker and Tomes (1986), who  use the term 

‘familial cultural infrastructure,’ which I shorten below to ‘family culture.’  
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family culture, or perhaps neighborhood effects (if neighborhoods are income-

segregated).     Bénabou (in press) uses a relationship like (3.2), and gives some weak 

evidence that b+c<1;  we will, however, study the case b+c=1, for reasons explained 

below, and even the case b+c>1.   We refer to these cases as ones of decreasing , 

constant, and increasing returns to scale, respectively. 

 If an adult of type h works at her full potential then her (pre-tax) earnings are h.   

Thus human capital is measured in units of income-earning capacity. 

(iii) The policy space 

 Let C  be the space of continuous functions on the domain R+ .  A policy is a pair 

of functions (ψ,r) ∈ C × C  such that 

0

∞

∫ (ψ(h)) + r(h)) dF(h) ≤ µ               (3.3a)

for all h, ′ ψ (h) + ′ r (h) ≥ 0,               (3.3b)
′ ψ (h) + ′ r (h) ≤1,                 (3.3c)

,  

where ‘prime’ indicates derivative, and the inequalities are meant to hold where the 

derivatives exist.  The interpretation is that ψ(h)  is the after-tax income of an adult of 

type h , and r(h) is the public educational investment in a child from an h-family.  We 

call ψ(h) + r(h) ≡ X (h) the total resource bundle allocated to an h household, so (3.3b,c) 

restrict the rates at which the total resource bundle changes with h.   We call (3.3b,c) 

social norms, as they are not motivated by political competition or incentive 

compatibility considerations7. 

                                                 
7 There is a natural incentive compatibility condition, that adult utility be non-decreasing 

in h, so that no adult would have an incentive to work at a lower income-earning capacity 

than her true capacity.  The local version of this condition is: 
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 Thus, our policy space is  T = (ψ,r) ∈ C × C  (3.3a,b,c) hold{ } . 

 In a laissez-faire regime, with no taxation, we have X(h) = h, and so ′ X (h) = 1.  

Thus the laissez-faire policy is on a boundary of our policy space. 

 We assume that all educational investment is public8.  A policy (ψ,r)specifies 

decisions on the four political problems described in Section 1. 

 Thus the indirect utility function v:T × H → R  is given by 

v(ψ,r,h) = log ψ(h) + γlog αhb r(h)c

= log ψ(h) + γlog αhb + γc log r(h)
˜ = log ψ(h) + γc log r(h)

  (3.4) 

where, in the last line of (3.4), we have dropped a gratuitous constant term.  

  

B.  Quasi-PUNEs 

 For a given point (h*,y) ∈ R+ × R , consider the following two programs: 

                                                                                                                                                 

 
′ ψ (h)

ψ(h)
+ γc

′ r (h)
r(h)

≥ 0. (3.5) 

Some might prefer to substitute (3.5) for (3.3b) in the model, but doing so renders the 

analysis below much more difficult: it converts what will be a convex optimization 

problem on an infinite-dimensional space to a difficult, non-convex problem.  In the 

interests of simplicity, and not diffusing attention from our main concern, we use (3.3b) 

in lieu of (3.5).  We conjecture, however, that the results we report would remain the 

same if (3.3b) were replaced with (3.5). 

 
8 This assumption is relaxed below in section 5. 
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max
(ψ,r)∈ C 2

log(ψ(h) + γc log r(h)) dF(h)
0

h*

∫
s.t.
0 ≤ ′ ψ (h) + ′ r (h) ≤1 (3.61)

(ψ(h) + r(h))d F(h) ≤ µ (3.62)
0

∞

∫
log ψ(h *) + γc log r(h *) ≥ y (3.63)

 

 

 
 
 
 

 

 
 
 
 

 (3.6) 

 

max
(ψ,r)∈ C 2

log(ψ(h) + γc log r(h))d F(h)
h*

∞

∫
s.t.
0 ≤ ′ ψ (h) + ′ r (h) ≤1 (3.71)

(ψ(h) + r(h))d F(h) ≤ µ (3.72)
0

∞

∫
log ψ(h *) + γc log r(h *) ≥ y (3.73)

 

 

 
 
 
 

 

 
 
 
 

 (3.7) 

 Let (h*,y)  be such that solutions (ψ L ,rL ) and (ψ R,r R ) exist to (3.6) and (3.7), 

respectively, and such that inequalities (3.63) and (3.73) bind at the solutions.  We will 

show that the following hold: 

1. 0 ≤ h ≤ h*
⇒ v(ψL ,r L ,h) ≥ v(ψR ,rR,h),  and

2. h * ≤ h ≤ ∞ ⇒ v(ψ R,r R,h) ≥ v(ψL ,r L ,h).  

 It will follow that (ψ L ,rL ) and (ψ R,r R ) constitute a quasi-PUNE at (h*,y) , and  

that solutions of programs (3.6) and (3.7) at which (3.63) and (3.73) bind comprise 

precisely the quasi-PUNEs for our problem. 

 Our first task is to characterize the set  

Γ = {(h*,y) ∈ R+ × R |solutions to (3.6) and (3.7) exist at which (3.63) and (3.73) bind}. 

 Note that T = (ψ,r) ∈ C × C  (3.61) and (3.62) hold{ } .  For fixed h*, consider the 

following three programs: 
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max v(ψ,r;h)d F
0

h*

∫ (h)

(ψ,r) ∈ T

 
 
 

  
 (3.8) 

max v(ψ,r;h) dF
h*

∞

∫ (h)

(ψ,r) ∈ T

 
 
 

  
 (3.9) 

maxv(ψ,r;h* )
(ψ,r) ∈ T

 
 
 

 (3.10) 

Let their solutions be denoted τ L ,τ R ,  and τ * , respectively, where τ = (ψ,r)  is the generic 

policy.  Let y*(h* )  be the value of program (3.10), i.e. 

y*(h* ) = v(τ*,h *) , 

and define 

y L(h*) = v(τ L ,h *), yR (h *) = v(τ R ,h* ). 

We have: 

Proposition 2.  For h* given, (h*,y) ∈Γ  iff 

max[yL (h* ),y R (h *)] ≤ y ≤ y*(h*),           (3.11) 

or  Γ = (h*, y)max[yL (h*),y R (h*)] ≤ y ≤ y*(h* ){ }. 

Proof:  See appendix. 

 The virtue of the quasi-PUNE notion is now evident: we can characterize the set 

Γ , and thus the set of quasi-PUNEs, merely by solving the three programs (3.8), (3.9), 

and (3.10).  No fixed-point machinery is needed to do this. 

We next solve these three programs. 

Proposition 3.   Let ( , )ψ r  be a solution to (3.6), (3.7), (3.8), (3.9), or (3.10). 
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Then 

r(h) = γc ψ(h) =
γc

1+ γc X(h).   (3.12) 

Lemma. Let X be the total resource dedicated to household h.  Then the 

household’s optimal distribution of X between consumption ψand educational 

investment r is 

ψ =
1

1+ γc
X

r =
γc

1+ γc
X .

 

Proof:  The household would choose consumption ψ to maximize its utility, which leads 

immediately to the claim.    ■  

Proof of Proposition 3: See appendix. 

Remark 5. If we replaced social norm (3.3b) with incentive compatibility (3.5), 

Proposition 3, although probably true, is much more difficult to prove.  It is for this 

reason that we employ (3.3b). 

    Recall that X(h) = ψ(h) + r(h).  By substituting from (3.12), we can reduce 

(3.8), (3.9), and (3.10) to the following three programs: 

max
X ∈ C

log
0

h*

∫ X (h)d F(h)

s.t.

X(h)dF(h) ≤ µ
0

∞

∫
0 ≤ ′ X (h) ≤ 1.

 

 

 
 
 

 

 
 
 

 (3.8a) 
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max
X ∈ C

log
h*

∞

∫ X(h)d F(h)

s.t.

X(h)d F
0

∞

∫ (h) ≤ µ

0 ≤ ′ X (h) ≤ 1,

 

 

 
 
 

 

 
 
 

 (3.9a) 

and 

max
X ∈ C

log X(h* )

s.t.

X(h)d F
0

∞

∫ (h) ≤ µ

0 ≤ ′ X (h) ≤ 1.

 

 

 
  

 

 
 
 

 (3.10a) 

In other words, Proposition 3 enables us replace optimization problems on C × C  with 

optimization problems on C.   

We have: 

Proposition 4.   

a.  The solution to  (3.8a) is 

X h*
L (h) ≡ µ; 

 b.  The solution to (3.9a) is 

Xh*
R (h) =

x + h,  for h ≤ y
x + y,  for h > y

 
 
 

 

where (x,y) solves the following two simultaneous equations: 
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x + hdF(h) + y(1− F(y)) = µ              (3.13a)
0

y

∫

dF(h)
h + xh*

y

∫ =
F (y)
x + y

  .                                 (3.13b)

 

  We have x >0.  The solution is illustrated in Figure 1. 

c.  The solution to (3.10a) is illustrated in Figure 1.  It is given by 

Xh* (h) =
X0

* + h, if 0 ≤ h ≤ h*

X0
* + h* if h > h*

 
 
 

, 

where X0
*is the solution of the equation 

X0
* + h dF

0

h*

∫ (h) + h* (1− F(h*)) = µ.  (3.14) 

The solution is illustrated in Figure 1. 

Proof:  See appendix. 

 Here is an intuitive argument for part of Proposition 4. 

 Consider program (3.8a).  The benefit to household h is log X (h); the cost  (to the 

optimizer) of supplying household h is X(h) ; hence the benefit-cost ratio, 
log X (h)

X (h)
, is 

non-increasing in h, because ′ X (h) ≥ 0 is required.   So the optimizer should give as 

much of the resource as possible to low h: front-loading, so to speak.  The binding 

constraint is ′ X (h) ≥ 0: so the planner allocates X(h) ≡ µ . 
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 Second, consider (3.10a).  Clearly it is a waste to give any resource to h > h*, so 

we must have 

 X(h) = X (h*) for h > h *. 

Now the optimizer wants to minimize what goes to [0,h*), conditional upon reaching a 

high value at h*, so X should descend rapidly (at rate 1) to the left of h*.   The stated 

function Xh*  makes the value at h* as large as possible.    

 Claim (3.9a) is harder to motivate, and so we do not do so. 

 In like manner using Proposition 3, we can reduce programs (3.6) and (3.7) to: 

max
X ∈ C

log X(h) dF
0

h*

∫ (h)

s.t.
0 ≤ ′ X (h) ≤ 1

X(h)d F(h) ≤ µ
0

∞

∫
log X (h *) ≥ ˆ y , (3.63a)

 

 

 
 
  

 

 
 
 
 

 (3.6a) 

and 

max
X ∈ C

log X(h)d F
h*

∞

∫ (h)

s.t.
0 ≤ X(h) ≤1

X(h)d F(h) ≤ µ
0

∞

∫
log X (h *) ≥ ˆ y , (3.73a)

 

 

 
 
  

 

 
 
 
 

 (3.7a) 

where  ˆ y = log(1 + γc) +
y − γc log γc

1 + γc . 
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Of course, the analogous result to Proposition 2 holds, that is: 

Proposition 2a.  Let ˆ Γ = {(h*, ˆ y ) ∈ R+ × R (3.6a) and (3.7a) have solutions at which 

(3.63a) and (3.73a) bind}.  Define 

ˆ y L(h*) = log X
h*
L (h*)

ˆ y R(h* ) = log Xh*
R (h*)

ˆ y *(h* ) = log Xh* (h*)

 

Then 

max [ ˆ y L (h* ), ˆ y R (h*)] ≤ ˆ y ≤ ˆ y *(h*) . (3.11a) 

Conversely, if (3.11a) holds, then (h*, ˆ y ) ∈ ˆ Γ . 

Proof:  As in Proposition 2. 

 ˆ Γ  is our parameterization of the set of quasi-PUNEs associated with the ‘reduced’ 

problem, where we work with the total-resource bundle function, X.  From consideration 

of the three programs (3.8), (3.9), and (3.10), it is clear that the interval of admissible 

values ˆ y  is non-empty for every h*. 

 In figure 2, we illustrate the manifold ˆ Γ .  It is the case that quasi-PUNEs exist for 

every h*>0.   

 We next derive what the quasi-PUNE looks like at (h*, ˆ y ) ∈ ˆ Γ . 

Proposition 5.  Let (h*, ˆ y ) ∈ ˆ Γ .   Then: 



 24

a. The solution to (3.6a) is illustrated in Figure 3.  It is defined by: 

X L(h) =

ˆ X 0
L , 0 ≤ h ≤ hL

ˆ X 0
L + (h − hL ) , h

L
≤ h ≤ h*

e ˆ y , h > h *

 

 
 

 
 

 

where ( ˆ X 0
L ,hL)  is the simultaneous solution of the two equations: 

  log( ˆ X 0
L + (h* − hL )) = ˆ y ,          (3.15a) 

ˆ X 0
L + (h − hL) dF

hL

h*

∫ (h) + (1− F (h*))(h * −hL ) = µ.  (3.15b) 

We have ˆ X 0
L > 0. 

b. The solution of (3.7a) is illustrated in Figure 3.   It is defined by: 

X R (h) =
ˆ X 0

R + h, 0 ≤ h ≤ hR
ˆ X 0

R + hR, h > hR

 
 
 

  
 

where ( ˆ X 0
R,hR ) is the simultaneous solution of: 

log( ˆ X 0
R + h *) = ˆ y ,  (3.15c) 

ˆ X 0
R + h dF

0

hR

∫ (h) + (1− F(hR ))hR = µ. (3.15d) 

We have ˆ X 0
R > 0. 

Proof: See appendix. 

 Propositions 4 and 5 completely characterize the manifold of quasi-PUNEs. 
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    We have one item left to check: that every member of each party weakly prefers 

her party’s policy to the other party’s policy.  This claim is easy to verify.  Indeed, from 

figure 3  we see that the total resource bundle functions of the two parties coincide on the 

interval [hL ,h* ]  of types, and indeed, each member of a party weakly favors her party’s 

policy to the other’s.   

 The two educational investment functions are just multiples of the functions 

graphed in Figure 3, for according to Proposition 3, if X(⋅)  is proposed by either party in 

a quasi-PUNE, then 

 
r(h) =

γc
1 + γc

X (h),  and

ψ(h) =
1

1 + γc
X (h).

     

 From Figure 3, we see that, any quasi-PUNE, the Left policy is more egalitarian 

than the Right policy.  Furthermore, each is more egalitarian than the laissez-faire policy, 

a fact we state as: 

Proposition 6.  Let b+c=1.  Let h2 < h1 be two levels of human capital, and let hiJ  be the 

human capital level of the child of hi , for i=1,2 in regime J, where J can be L,R, or lf, 

standing for Left victory, Right victory, or laissez-faire.  (The L and R policies are 

associated with a given quasi-PUNE.)  Then: 

 
h1L

h2L ≤
h1R

h2R <
h1lf

h2lf =
h1

h 2 .  

Proof: See appendix. 
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 Proposition 6 tells us that, under either Left or Right victory in a democracy, there 

is an equalizing effect on the dispersion of human capital from one generation to the next, 

when there are constant returns to scale.  If b+c < 1, the equalizing effects of Left and 

Right policies are only magnified. 

C. Existence of PUNEEP 

 We know every PUNEEP is a quasi-PUNE.  We now show that the set of 

PUNEEPs is non-empty.  To do so, we compute the PUNEEP where each party plays the 

ideal policy of its militants. 

 Let h*  be any type, and let L = [0,h*) and R = [h*,∞).   Let each party play the 

ideal policy of its militants.  We have denoted these policies Xh*
L  and Xh*

R .   This is clearly 

a PUNE because the militant factions will not deviate to any other policy.  It will, 

however, generally not satisfy the endogenous party constraint [Definition 1, part (C)].  It 

will satisfy that constraint exactly when  Xh*
L (h*) = µ = Xh*

R (h*) = x(h*) + h*,  where 

x(h*) is the number x that solves equation (3.13b).  Thus, there is a PUNEEP where  both 

parties play the ideal policies of their militant factions at h* when the triple (x,y,h*) 

solves equations (3.13a), (3.13b), and 

 x + h* = µ,  

simultaneously.    

 It would be distracting to show that such a solution exists for any F.  Without 

proving this, we simply display the solution for F taken as the lognormal distribution 

with mean 40 and median 30: it is 
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 h* = 39.3739, x(h*) = .626149, y(h*) = 171.38. 

 Unfortunately, this is the only PUNEEP whose existence is easy to prove, because 

it is trivial to observe that neither parties’ militants will accept any deviation.   

 Hence the set of PUNEEP is non-empty.   I conjecture that the set of PUNEEPs is 

indeed a 2-manifold in the set of quasi-PUNEs,  but verifying that conjecture is beyond 

this paper’s scope. 

 

§4 Democratic dynamics 
 
A.  Introduction 
 
 We now imagine a sequence of overlapping generations, at dates t = 0,1,... .  The 

probability distribution of adult wages at date 0 is F 0.  Political competition is organized 

over the questions of taxation and educational investment, and a PUNEEP is realized, 

inducing a policy lottery.  One party wins the election, and its educational investment 

policy is implemented, giving rise to a distribution of wages at date 1, F1.  This process 

continues forever, inducing a sequence {F t}of wage distributions.  We are interested in 

properties of the asymptotic distribution of human capital. 

 Over time, it is not reasonable to suppose that α remains constant.  We therefore 

denote its time-dated value by  α t .  Let µ t  be the average human capital at date t.   

 

  The coefficient of variation (CV) of F t  is 

ηt = (
h
µ t −1)2 d F t (h)∫

 

 
 

 

 
 

1
2
. (4.1) 



 28

We are, in particular, interested in the limit of {η t}.  Does it exist, and if so, is it positive 

or zero?  If it is zero, we say that the distribution of human capital converges to equality.  

(In that case, given any pair of dynasties, the ratio of levels of human capital of their 

representatives tends to one with time.) 

B. Laissez-faire 

 Under laissez-faire, X(h) = h.  The optimizing parent divides her income between 

household consumption and investment as follows, from the lemma: 

 r(h) =
γc

1 + γc X (h), ψ(h) =
1

1 + γc X (h). 

Consequently, her child has human capital 

 ′ h = α(
γc

1 + γc )c hb+c .  

Suppose that b + c = 1.  Then it follows that the distribution of human capital tomorrow is 

identical to the distribution today: all human capitals are multiplied by a constant.   

Consequently, the coefficient of variation of human capital is constant across time. 

 If b + c < 1, then it follows immediately from the above formula that the ratio of 

human capitals in any two dynasties approaches one over time, and hence the coefficient 

of variation of human capital approaches zero. 

 If b+c >1, then the ratio of human capitals in any two dynasties approaches 

infinity, and the coefficient of variation explodes. 

 

C. Democracy 

 We will first work with an altered sequence of distributions, normalized to 

maintain the mean constantly at µ 0 .  Define the distribution function 
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ˆ F t(h) = F t (
µ 0

µ t h) , (4.2) 

and let ˆ F t  be the associated probability measure.  Then the mean of ˆ F t  is µ 0 .  Since ˆ F t  

has the same coefficient of variation as F t , it will suffice to study the coefficients of 

variation of the sequence {ˆ F t}. 

Proposition  7. Let  b + c ≤ 1. Then 

  (a) then the distribution function ˆ F t +1cuts the distribution function ˆ F t  once from below.  

That is, 

(∃ ′  h )(0 < h < ′ h ⇒
ˆ F t +1(h) < ˆ F t(h) and h > ′ h ⇒

ˆ F t +1(h) > ˆ F t(h)).  

(b) The sequence  {η t} is monotone decreasing, and hence converges. 

Proof. See appendix. 

 

 We have noted that if b+c < 1, then, under laissez-faire, the distribution of human 

capital converges to equality.  It is easy to show that the same thing happens under 

democracy, regardless which quasi-PUNE is realized at each date: this follows from the 

argument in Proposition 6, which shows that the coefficient of variation under democracy 

decreases at least as fast as under laissez-faire.     Thus to compare the performance of 

democracy and laissez-faire, with regard to equality, for the case b+c < 1,  would require 

comparing speeds of convergence, a delicate undertaking.   Rather than attempting this, 

we will study, instead, the asymptotic properties of the democratic regime under the 

assumption that b+c=1, for we know that under laissez-faire, there is no change in the 

CV over time in this case.  Thus, laissez-faire provides a clean bench-mark in the case of 

constant returns. 
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 We will study the asymptotic distribution of human capital for certain special 

sequences of quasi-PUNEs.  Fix a type h*>0, and define the sequence A(h*) as those 

quasi-PUNEs which lie on the lower boundary of the manifold ˆ Γ t  at each date t, and the 

pivotal type ht
* which demarcates the partition of the type space into the two parties is the 

tth descendent of h*.  Let B(h*)  be that sequence of quasi-PUNEs which, at each date t, 

lie on upper boundary of the manifold ˆ Γ t , and where ht
*   is the tth descendent of h*. See 

figure 2. 

 

Theorem 1.   Let  b+c=1.  For any h*>0, the limit CV of the  distribution of human 

capital for the sequence A(h*) is zero, and the limit  CV of  distribution of human capital 

for the sequence B(h*) is positive. 

 

The sequence B(h*) is associated with quasi-PUNEs at which both parties play the ideal 

policy of type ht
*  : these are quasi-PUNEs where the opportunists in the two parties are 

all-powerful.  To see this, note that the upper envelope of the manifold of quasi-PUNEs, 

illustrated in Figure 2, is associated with pairs (h*, ˆ y ) at which the right-hand inequality 

of (3.11a) is binding.  This means that both parties are playing the ideal policy of type h*: 

the parties are as far as possible from satisfying their militants.   In the sequence A(h*), in 

contrast, the militants in the two parties are powerful: in at least one party, at those quasi-

PUNEs, the party plays the ideal policy of its militants, and in the other party, the 

militants are as strong as they can be.  These quasi-PUNEs are associated with points 

(h*, ˆ y ) at which the left-hand inequality in (3.11a) is binding. 
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 Note that, if Ft is the CDF of the distribution of types at date t, for either the 

sequence A(h*) or B(h*), then F t(ht
*)  is constant for all t, because the members of a 

dynasty occupy the same rank in their respective type-distributions forever.  Since the 

probability of Left victory at a quasi-PUNE in either of these sequences is π*(F t (ht
*)) , 

this probability is a positive constant over time, in the open interval (0,1).  Therefore, in 

both sequences of quasi-PUNEs, each of Left and Right win elections an infinite number 

of times.  We use this fact below. 

Proof of Theorem: See appendix. 

 

§5  Topping Off  

 We have assumed until now that educational funding is purely public.  But 

winning publicly financed education has been itself a significant victory of democracy.  

So it would have been more convincing to begin with the supposition that education 

could be privately or publicly financed. 

 First, note that at any quasi-PUNE, under our assumptions, no household will 

desire to top off public education with additional private education, because every quasi-

PUNE partitions the household’s total resource bundle just as the optimizing household 

would.  So there will be no demand for further private education at these equilibria. 

 Now suppose that it is not assumed, initially, that education will be publicly 

financed.  Thus, a party may propose a policy (ψ,r) assuming that citizens will top off 

privately, if r(h) <
γc

1 + γc X (h).  Thus, the h-household facing the policy (ψ(h),r(h)) 

solves for its private educational investment, which we denote rP (h): 
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  Max
rP

log(ψ(h) − rP ) + γc log(r(h) + rP ) . 

The solution is 

 rP (h) =
γcψ(h) − r(h)

1 + γc . 

   Then 

 
ψ(h) − rP (h) =

X (h)
1 + γc

,and 

rP (h) + r(h) =
γcX (h)
1 + γc

.
 

Without loss of generality, we may therefore write the household’s indirect utility 

function as  

 v(ψ,r;h) = log
X (h)

1 + γc + γc log
γcX(h)
1+ γc ≅ log X (h). 

Now each party takes account of the fact that its members will top off, if need be, and so 

we may write the program of the Left party (for instance) at h* as: 

 

Max
z(⋅)

log X (h)
0

h*

∫ dF(h)

s.t. 0 ≤ ′ X (h) ≤ 1

X(h)dF(h) ≤ µ
0

∞

∫

log X (h*) ≥ y *.

 

It is thus clear that the set of  quasi-PUNEs where private financing of education is not 

precluded is isomorphic to the set of quasi-PUNEs where only public financing is 

possible.  It is a matter of indifference whether education is publicly funded or whether 

households finance some or all education privately: the children receive identical 

educational investments in both cases.    
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 In other words, our model is not constructed to elucidate why publicly financed 

education is an almost ubiquitous institution of advanced democracies.   

 

§6   Democratic dynamics with a unidimensional policy space 

 In this section we study the dynamics of the distribution of human capital under 

‘median voter politics,’ in order to compare what occurs to the results of section 4.  

 To this end, suppose that the political problem is to choose a total-resource-

bundle function X(h) , where X  is an affine function satisfying constraints: 

  
0 ≤ ′ X (h) ≤ 1

X(h)dF (h) =∫ µ .
 

It is understood that the partition of X into consumption and educational investment will 

be given by: 

  
ψ(h) =

1
1 + γc

X (h)

r(h) =
γc

1 + γc
X (h).

 

Using the budget constraint we may write: 

 X(h) = ah + (1− a)µ,  

and thus the policy space is the unidimensional interval a ∈ [0,1].  The indirect utility 

function of voter h on the policy space is 

 v(a;h) = Log(ah + (1− a)µ), 

which is single-peaked (in a).  Consequently, there is a unique Condorcet winner, the 

ideal policy of the voter with median human capital.  It follows that the political 
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equilibrium under Downsian politics9 is that both candidates (or parties) propose the 

policy: 

 a =
1,   if m > µ
0,  if m < µ

 
 
 

 

where  m is the median of F.   

Suppose b+c = 1.  If m > µ , then the political equilibrium is laissez-faire, and it 

follows that the coefficient of variation is constant forever, since the distribution simply 

reproduces itself forever (modulo a constant multiplicative factor).   

 On the other hand, if m0 < µ0   (we are now time-dating the distributions), then 

r(h) =
γc

1 + γc µ0  is the investment function at the Condorcet winner at date 0.  It follows 

that the human capital of the child of h will be: 

 S(h) = k0h
b,  

where k0 = α(
γc

1 + γc µ0 )c .   At date 1, then, the mean of the new distribution is 

 µ1 = k0 hb∫ dF 0(h),  

and its median is: 

 m1 = k0m
0b

, 

since the median of the new distribution is the child of the median of the earlier 

distribution.  

If m1 < µ1 then again the Condorcet winner is the policy X(h) = µ1 , and 

S2(h) = k1h
b 2

 is the human capital of the grandchild of h.   

                                                 
9 In Downsian politics, the two parties consist solely of opportunists.  Each party, that is, desires 
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 It therefore follows that the coefficient of variation of human capital converges to 

zero if and only if mt < µ t  for all t.  For if it ever happens that mt > µ t , then the CV is 

constant from that time onwards.   If  mt < µ t  is always true, it is obvious from the 

formula for St(h) that the ratio of human capitals of any two dynasties approaches unity. 

 We now have: 

Theorem 2.  Let b+c=1.  Let F be the date 0 distribution of h,  with median m and mean 

µ.  Under median-voter politics, on the unidimensional policy space, the CV of the 

distribution of human capital converges to zero if and only if 

  log m ≤ log h dF (h).∫  

Proof: See appendix. 

 The condition "log m ≤ log h dF (h)"∫ is stronger than the condition "m ≤ µ".  (Just 

note that log m ≤ log h dF (h)∫ ⇒ m ≤ exp( log h dF(h)∫ )⇒ m ≤ h dF (h)∫ = µ, where the 

last implication follows from Jensen’s inequality [for convex functions].)  But the 

converse direction is generally false.  So the critical inequality for the theorem is one that 

can be interpreted as strong positive skewness of the distribution F (because ‘m<µ’  is 

commonly called positive skewness).   

 It is easy to see that if b+c<1, then the CV converges to zero always.  Moreover, 

if b+c>1 and b<1, then the argument of Theorem 2 shows that the CV converges to zero 

if and only if strong positive skewness holds; when it does not hold, the CV explodes.  

 

§7 Simulations 

                                                                                                                                                 
to maximize the probability of victory. 
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We here report the results of several simulations.  In the first economy simulated, 

b=c=0.5=γ,  and we begin with the lognormal distribution whose mean and median are 

40 and 30, respectively -- this looks like the distribution of income in the US, in 

thousands of dollars, in the early 1990s.  We take as the quasi-PUNE realized the one 

with pivot h* at the median of the distribution at each date (which means each party 

represents exactly one-half the population) and which is located half-way between the 

upper and lower boundaries in the manifold of quasi-PUNEs – thus, we attempt to 

capture a political system where the opportunists and militants each have some 

bargaining power inside the parties. 

  Some results are presenting in Table 1 and Figure 5.  At each date, each party 

wins with probability one-half; there is a different sequence of L-R victories in the nine 

simulations displayed in the table, depending on the realization of this random variable.    

We see that the CV of the distribution of human capital appears to converge very rapidly 

to zero in the six generations of our simulations.  Theorem 1, however, does not tell us 

whether, in fact, convergence to zero occurs, because the PUNEs we study are not on the 

lower boundary of the manifold. 

 Thus, we see that the convergence to equality – or at least to very low levels of 

inequality -- which occurs at certain quasi-PUNEs, even when b+c =1, is very dramatic 

in the model.   Ruthlessly competitive politics are radically different from laissez-faire. 

 As a second illustration of the equalizing power of political competition,  I ran 

simulations for the economy with b=c= 0.75 -- that is, with increasing returns to scale.  (I 

began with same lognormal distribution of human capital.)  The results for two six-

generation societies are presented in Table 2.  We see that the CV decreases over time, 
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although not so dramatically.  But after six generations of laissez-faire, the CV of the 

distribution of human capital is 1.03 x 1011 !  In the light of the evident effect of 

increasing returns, political competition, as here formulated, is strongly equalizing.  

 

§ 8 Discussion 
 
 We summarize the dynamics of human capital in Table 3. 
 
  [table 3 here] 
 
 The case b+c=1  offers the cleanest way of comparing the performance of the 

three regimes.  In our hypothetical laissez-faire society, the coefficient of variation(CV) 

of the distribution of human capital stays constant over time, when the educational 

production function exhibits constant returns to scale.  Under democracy, the CV of that 

distribution decreases monotonically; whether or not it decreases to zero depends, in our 

model, on the nature of intra-party struggle.  If militants (or guardians) are relatively 

powerful, then the limit distribution is one of perfect equality.  If the opportunists are 

relatively powerful, it is not.  One might paraphrase by saying that, to the extent that 

democratic politics are ideological  then democracy engenders equality, but if democratic 

politics become dominated by political opportunists then equality is not achieved in the 

limit.   If there are decreasing returns to scale (b+c <1), then democracy and laissez-faire 

both produce equality in the long-run, and we suggest (without proof) that our results 

translate into statements about relative speeds of convergence to equality. 

 Our conclusion is very different from what Downsian politics on a 

unidimensional policy space produces. There, when b+c=1, convergence to equality 

occurs, if and only if the initial distribution of human capital is ‘strongly positively 
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skewed.’    This result differs in two ways from the result under democracy.  First, the 

conclusion of Theorem 1 is independent of the initial distribution, and second, on the 

large policy space, convergence to equality never occurs when the opportunists are the 

dominant factions in the parties.  (This is, after all, the analogue to Downsian politics, 

where each party desires only to maximize its vote fraction.)   We propose that this 

difference between the models shows the pitfalls of the unidimensional Downsian 

analysis, and underscores our point that large-dimensional policy spaces are not simply a 

mathematical nicety: rather, a serious misspecification occurs if we model politics in a 

unidimensional way, when, in reality, policies are not so restricted. 

 We offer an intuition to explain the different results that we attain on the uni- and 

infinite-dimensional policy spaces.  When the opportunists dominate party politics, 

equilibrium entails that both parties propose the ideal policy of the median (in the 

unidimensional case) or the pivot (in the infinite dimensional case) voter.   In the 

unidimensional case, if the median is less than the mean human capital, then the median 

voter’s ideal policy is in fact progressive -- that is, very good for the poor.  (It entails 

equal investment in all children.)  This is a consequence of the fact that there are very few 

degrees of policy freedom, so that doing well by the median voter requires, willy-nilly, 

doing well by the poor.  But in the infinite dimensional case, doing well by the pivot 

voter requires a regressive policy for the poor!  That is to say, on the infinite dimensional 

policy space, the interests of the poor and the pivot diverge, something which is not true 

on the unidimensional policy space. 
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 However, when the militants dominate party politics, then the policy is 

progressive for the poor in the Left party, and this delivers ultimate convergence to 

equality. 

 It is also noteworthy that, although our policy space is infinite dimensional, the 

policies proposed by each party in political equilibrium in fact lie in two two-dimensional 

spaces of functions.  First, note that once the total-resource function X(⋅)  is specified, 

then we know the two functions ψ  and r; second, note that once we know the two 

coordinates (h*, X(h*)), then we can immediately compute both the Right and the Left 

total-resource function, given the budget constraint.  So each party, in the end,  chooses 

its policy in a two dimensional subspace of T, parameterized by the pivot type and the 

total resource she receives.    In real democracies, we almost always observe piece-wise 

linear tax policies, often with more pieces than the policies parties propose in our 

model10.  We can generate more pieces on the tax policies (in our model) by including 

more factions in the parties than the ones here postulated.  

 In other words, the relative simplicity of observed income tax schedules is 

consistent with our model’s assumption, that parties are choosing policies from an 

infinite dimensional policy space. 

 

 Why have we not observed more rapid convergence to equality of wages in 

advanced democracies?   Besides the fact (if it is one) that politics are dominated by 

opportunists, a number of reasons can be suggested -- reasons which take the form of 

divergence from the premises of our model.  These include: 
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•  random talent or effort  

•  technological shocks 

•  imperfectly representative democracy 

•  elastic labor supply 

•  non-economic issues 

•  multi-party politics. 

We take these up in turn. 

 In the model, the human capital of the child is a deterministic function of the 

human capital of the parent and educational investment.  In reality, children from families 

with similar parents differ according to their talent and their effort, which we could 

model by inserting a stochastic multiplicative term in the educational production 

function.  Doing this does not complicate the analysis very much.  Statements about 

convergence to equality in the deterministic model become translated into analogous 

statements about the non-persistence of the effect of initial conditions on the wages of 

distant descendents.  That is, in the model with stochastic talent, in the sequence of 

PUNEs that lie on the lower boundary of the manifold, it is the case that there is 

eventually no influence of the wage of the initial parent (Eve) on the wages of members 

of her dynasty, whereas, for the sequence of PUNEs on the upper boundary of the 

manifold, there is persistence.  Thus, ‘convergence to equality’ becomes translated into 

‘equality of opportunity,’ in the sense that the socio-economic status of an individual’s 

family origin eventually has no influence on his own level of human capital. 

                                                                                                                                                 
10 Every OECD country except Germany has a piece-wise linear income tax schedule.  Germany 

uses a smooth polynomial. 
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 In our model, the only kind of technological change allowed was neutral, in the 

sense of  time-dating the constant α t .  In reality, technological change is often non-

neutral.  This is the case with the shock to the educational production function in the US 

and UK in the last twenty years.  Clearly, if non-neutral technological change is 

historically important, it can upset the process of convergence to equality. 

 Our model assumes that every citizen is a member of a party, and that parties 

aggregate the interests of their members in an unbiased way: these two premises 

constitute the assumption of ‘perfectly representative democracy.’  There are very few 

countries today where an approximation of these premises holds, and , in every case, this 

ideal has only existed for at most two generations.   

 Because we have assumed an inelastic labor supply, parties in the model put forth 

policies which involve 100% marginal tax rates on certain intervals of the income 

distribution. With elastic labor supply, this will not happen, and convergence to equality 

will be retarded, if not eliminated. 

 Non-economic issues, especially concerning racial and ethnic questions, are 

politically salient in many countries, and these issues can retard redistribution.  Thus, 

poor natives (or whites) of a country may vote for the party of the Right because that 

party opposes immigration (or income redistribution to minorities).   There is reason to 

believe that American racism can explain a large part of the difference in the degrees of 

redistribution between the US and Europe.  (See  Alesina, Glaeser, and Sacerdote [2001],  

and Lee and Roemer [2002].)   But, in our model, citizens are presumed to have only 

economic interests. 
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 Finally, our model assumes only two parties.  We offer no analysis of the case 

when the number of parties is endogenous. 

 On the other hand, there are features of reality, not present in the model, that 

render reality more prone to equalization than the model: principally, citizens do have 

some degree of ‘altruism,’ which is to say, concern for the children of others.  Even 

without altruism, because education is to some degree a public good --  parents want the 

children of others to be educated because that will enhance the welfare of their children—

convergence to equality will be at least as rapid as in our model.  

 Thus, our model should be viewed as asking the question: In an ideal type of 

democracy, where citizens are interested only in their own dynasty, and education is a 

private good, will competitive politics induce equalization of human capital?  Clearly this 

is only the beginning of a thorough analysis. 

 In the United States, funding for public education of h-households does increase 

with h:  this is accomplished through the linking of educational finance with the local 

property tax base.  In the political equilibria of our model, this is the case—that is, both 

parties propose policies r(h) that are everywhere non-decreasing in h, and increasing in h 

in some intervals.  In many European countries, equal public educational investment in 

children of all backgrounds is closer to the truth. Section 5 tells us that, in these 

equilibria, rich parents will top off the public investment in their children.  I conjecture 

that, at least in the Nordic countries, this topping-off does not occur.   We may 

understand this as the consequence of the operation of another social norm – not one we 

have modeled here.  There is, however, an alternative explanation, that the education of 

other people’s children is a public good.     
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Theorem 1 has an implication for a debate in democratic theory.  Democratic 

theorists are divided into two groups, according to whether they define democracy in a 

minimalist or maximalist fashion.  The minimalist view (see, for example, Przeworski et 

al (2000)) is that democracy is best conceived as a system with political competition 

between parties, tout court.  The maximalist version frequently goes by the name of 

deliberative democracy (see, for instance, Elster (1998)); here democracy requires as well 

as political competition, a thorough-going discussion among citizens – a forum – at 

which citizens convince each other to take account of their mutual needs.   Maximalists 

tend to think that political competition alone will not suffice to bring about a decent 

society (read: equality or justice). 

 Our analysis tends to support this conclusion: something besides democracy is 

needed to guarantee convergence to equality.    

 We conclude with a final comment about the nature of democracy as here 

modeled.   The militants, reformists, and guardians are utilitarian, in the sense that they 

employ an objective function which is the average welfare of the party’s constituents. It 

is key for our results that the poor be represented in one of the parties.  Suppose that the 

poor were not represented in either party.  Then even the militants in Left would propose 

policies giving the poor as little as possible, consistent with giving the pivot voter his 

required utility.  Both parties would propose regressive educational policies for the poor, 

and convergence to equality would never occur.  It is probably the case that the poor can 

be underrepresented in Left, without losing convergence to equality, but they must be 

represented at least to some positive degree.  From a practical political viewpoint, this 

may be the most demanding condition of our model.     
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Appendix:Proofs of propositions 

 

Proof of Proposition 1: 

Let (tL ,tR ,h* )  be a PUNEEP with h*>0, L = [0,h*),and R = [h*,∞).By Remark 2, 

π(tL , tR ) = π* (F(L)) and 0 < π*(F(L)) <1 by definition of π* and the fact that F  is 

strictly increasing on R+ .  By Condition 1A of PUNEEP, there is no policy t that gives 

Left’s militants a higher payoff than they receive at tL  and  gives a higher probability of 

victory against tR .  In particular, there is no policy t that gives Left’s militants a higher 

payoff than at tL  and such that 

h ∈ [0,h*) ⇒ v( t,h) ≥ v(tR ,h), 

and 

v(t,h*) > y , 

for if there were, than, by continuity of v  in h  there would be an interval [h*,h * + ε)  such 

that 

h ∈ [h*,h* + ε)⇒ v(t,h) > v(tR,h). 

 It would then follow that at least the set of voters L ∪ [h *,h* + ε) would favor t 

and so a higher probability of victory could be achieved for Left at no cost to her 

militants. 

 It therefore follows that statement 2A of definition 2 is true, and that (L1) binds. 

 In like manner, statement 2B of definition 2 is true and (R1) binds, which 

concludes the proof.   ■  

Proof of Proposition 2: 
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1. Suppose y > y*(h* ) .  Then there is no feasible solution to (3.6) or (3.7), for (3.63) 

will never hold on T.  Thus we must have y ≤ y*(h* )  if (h*,y) ∈Γ . 

2. Suppose y < y L(h *) .  Then constraint (3.63) is not binding at the solution to (3.6), 

since the solution to (3.8) is indeed the solution to (3.6).  Similarly, if y y hR< ( )* , 

then constraint (3.73) is not binding at the solution to (3.7).  Thus (h*,y) ∈Γ  

implies y ≥ max[(yL(h* ),y R (h *)].  

3. Conversely, if (3.11) holds, then the opportunity sets of (3.6) and (3.7) are non-

empty, and at the optimal solutions, (3.63) and (3.73) must bind, because 

y ≥ max[yL (h* ),y R (h *)].  

4.       The proof thus far  ignores the compactness issue - whether non-emptiness of the 

opportunity sets for programs (3.6) and (3.7) implies the attainment of (optimal) 

solutions.  We shall show below that if (3.11) holds, solutions are indeed attained. 

■  

Proof of Proposition 3: 

Let ( ˆ ψ , ˆ r )  be a solution to program (3.6), and suppose that the claim were false.  Let 

ˆ X (h) = ˆ ψ (h) + ˆ r (h), and define 

 
 ψ(h) =

ˆ X (h)
1 + γc

,

r(h) =
γc ˆ X (h)
1 + γc

. 

It is straightforward to check that (ψ,r) ∈ T .  Furthermore, each household receives the 

same total resource at ( ˆ ψ , ˆ r )  and at (ψ,r).  But according to the lemma, for every h, 
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(ψ(h),r(h)) is the optimal way for household h to allocate the total resource assigned to 

it between consumption and education.  Therefore the objective function of (3.6) 

increases if we substitute  (ψ,r) for ( ˆ ψ , ˆ r ) , a contradiction.   (To be precise, the argument 

shows that  ( ˆ ψ , ˆ r )  must equal (ψ,r) except possibly on a set of F-measure zero. 

Continuity then completes the argument.)     ■  

 

 

Proof of Proposition 411: 

We prove part (b).  Proofs of the other parts are somewhat simpler, and of the same 

character.   Our task is to solve for the ideal policy of the Right militants: 

 

Max
ψ

Log X(h)dF (h)
h*

∞

∫

s.t. 0 ≤ ′ X (h) ≤ 1

X(h)dF (h) ≤ µ.
0

∞

∫

 

The solution is shown in the figure 1,  where (x, y) is the simultaneous solution of the 

following two equations: 

x + hdF(h) + y(1− F(y)) = µ              (A1)
0

y

∫

dF(h)
h + xh*

y

∫ =
F (y)
x + y

  .                                 (A2)

 

 

                                                 
11 We construct a proof that is ‘elementary,’ in the sense of not requiring any knowledge of 

optimal control theory or the calculus of variations.   
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(A1) says that the function X  integrates to µ, as required; (A2) fixes a particular pair 

(x,y). 

Denote this policy by X *. 

Define the function 

∆(ε) = Log(
h*

∞

∫ X * (h) + εg(h))dF(h) + λ(h)(1− (X *(h) + εg(h) ′ ) )dh + δ(µ − (X * (h) + εg(h))dF(h)).
0

∞

∫
0

y

∫

I will produce a non-negative function λ and a positive number δ such that, for any 

function g, ∆ is maximized at ε=0.   In particular, it follow that ∆(0) ≥ ∆(1).The second 

and third terms on the r.h.s of the definition of ∆ vanish at ε=0.   This will thus imply that  

  LogX * (h)dF(h) ≥
h*

∞

∫ Log(X *(h) + g(h))dF (h),
h*

∞

∫  

for any variation  g, proving the claim. 

 Note that ∆ is a concave function12.  It therefore suffices to show that ′ ∆ (0) = 0. 

Define λ and δ as follows, where f is the density of F and (x,y) are defined above: 

 (i) λ(0)=0, 

 (ii) ′ λ (h) = δf (h) on [0,h*], 

     (iii) ′ λ (h) = δf (h) −
f (h)

h + x  on [h*, y],  

 (iv) λ(y) = 0, and  

 (v) δ =
1

x + y . 

We must show that (i)-(iv) are consistent, given (v).  Note that ′ λ ≥ 0 on [0,h*] from (ii) 

and ′ λ ≤ 0 on [h*,y] from (iii) and the definition of y.  From (i) , (ii) and (v): 
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λ(h*) = δf (h)dh =
F (h*)
x + y0

h*

∫ .    

From (iii): 

λ(y) − λ(h*) = f (h)(
1

x + y
−

1
h + x

)dh
h*

y

∫ .  

Therefore (iv) is true if 

0 −
F(h*)
x + y

= (
1

x + yh*

y

∫ −
1

h + x
) f (h)dh =

F(y) − F(h*)
x + y

−
dF(h)
h + xh*

y

∫ ,  

which is true if and only if: 

 
dF(h)
h + xh*

y

∫ =
F (y)
x + y

.  

But the last equation is true by definition of (x,y).  

Thus the function λ is well-defined and non-negative on its domain, as required. 

We now differentiate ∆,  where g is an arbitrary, differentiable function: 

′ ∆ (0) =
g(h)dF (h)

X * (h)h*

∞

∫ − λ(h) ′ g (h) − δ g(h)dF(h)
0

∞

∫
0

y

∫  

=
g(h)dF (h)

h + xh*

y

∫ +
g(h)dF (h)

x + yy

∞

∫ + ′ λ (h)g(h)dh + ′ λ (h)g(h)dh − λ(h)g(h)
h*

y

∫
0

h*

∫
0

y

−

δ g(h)dF(h) − δ g(h)dF(h)
h*

∞

∫
0

h*

∫

 

where we used integration by parts, 

                                                                                                                                                 
12 Here is where we exploit the fact that the optimization program is convex.   
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=

(
f (h)

h + xh*

y

∫ + ′ λ (h))g(h)dh + (
1

x + y
− δ) g(h)dF (h) − δ g(h)dF (h) + ( ′ λ (h) − δf (h))

0

h*

∫
h*

y

∫
y

∞

∫ g(h)dh −

λ(y)g(y) + λ(0)g(0)
 

= (
f (h)
h + x + ′ λ (h) − δf (h))

h*

y

∫ g(h)dh + (
1

x + y − δ) g(h)dF(h) + ( ′ λ (h) − δf (h))
0

h*

∫
y

∞

∫ g(h)dh + 0  

= [by definition of ′ λ  and δ] 0, 

as was to be shown. 

 We finally  prove that x>0.   Using integration by parts: 

h dF(h) = hF(h)
0

y

∫
0

y

− F(h)dh = yF (h) −
0

y

∫ F (h)dh .
0

y

∫  

Hence, (3.13a) reduces to 

 x = µ + F(h)dh − y = µ + (1− F (h))dh = (1− F (h))dh,
y

∞

∫
0

y

∫
0

y

∫  

where the last step uses the well-known fact that µ = (1− F (h))dh .
0

∞

∫   Since F’s support is 

the positive real line, we have that x >0 if y<∞.   Suppose y=∞.  Then (3.13b) becomes 

 
dF(h)

hh*

∞

∫ = 0, 

a contradiction.  Therefore x>0.                          ■  

Proof of Proposition 5: 
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The proof that the optimal policies are as stated follows the template of the proof of 

Proposition 4(b),  presented above.  We will not go through those analogous 

constructions.  We do prove here that ˆ X 0
R > 0, and hence, that ˆ X 0

L > 0.   From (3.11a), we 

have that  

 Exp( ˆ y ) ≥ Exp( ˆ y R (h*)) = Xh*
R (h*) = x + h*, 

where the last part follows from Proposition 4(b).  Therefore, since X R (h) dominates 

Xh*
R (h)  on [0, h*], we have X R (0) = ˆ X 0

R ≥ x.  Now use the fact that x > 0 (Prop.4).              

■      

Proof of Proposition 6: 

1.  We may view figure 3 as a graph of the two educational investment functions, 

rL(⋅) and r R (⋅) .  Observe this geometric fact: Any chord on the graph of either function 

cuts the vertical axis above the origin, when extended.    (It is crucially important that the 

graphs of these two functions cut the vertical axis above the origin.) 

2.  Consider the R policy and let the equation of the chord connecting 

(h1,rR (h1)) and (h2,r R (h2 )) be denoted r = mh + d: we know that m ≥ 0 and d > 0.  

Therefore: 

 
h1R

h2R =
αh1b

rR (h1) c

αh2b

rR (h2 )c =
h1b

h2b

(mh1 + d)c

(mh2 + d)c <
h1b

h2b

h1c

h2c  

because 
mh1 + d
mh2 + d <

h1

h 2 .    Therefore 
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h1R

h2R <
h1

h 2 ,  

because b+c = 1.   The rest of the claim is straight-forward.    ■  

 

Proof of Proposition 7: 

Part (a).  Let ( , )ψ r  be the PUNEEP at date t.  Since the mapping h → α thbr(h)c  is 

strictly monotone increasing, parents and children occupy the same ranks in their 

respective wage distributions, that is: 

∀ h F t +1(α thb r(h)c ) = F t (h)  (4.3) 

Hence, from (4.2): 

∀ h ˆ F t +1(
µ t +1

µ 0 α thbr(h)c) = ˆ F t(
µ t

µ 0 h)  (4.4) 

 Let θ:R+ → R+  be defined by: 

 ∀ h ∈ R+
µ t

µ 0 h →
µ t +1

µ 0 α thb r(h)c .  

Then we may rewrite (4.4) as ˆ F t +1(h) = ˆ F t (θ−1(h)) , and so ˆ F t +1(h) >
<

ˆ F t(h)  as 

ˆ F t(θ−1(h)) >
<

ˆ F t(h) as θ−1(h) >
< h  as h >

< θ(h)  as h >
<

µ t +1

µ t α thbr(h)c  as 
h1−b

r(h) c
>
< α * ≡

µ t +1

µ t α t . 

 We next argue that the function ζ(h) =
h1− b

r(h)c  is strictly increasing on R+ , taking 

on values from zero to “infinity,” which means that  

(∃ ′  h )0 ≤h < ′ h ⇒ ζ(h) < α* and h > ′ h ⇒ ζ(h) > α* ) . 

 This will prove part (a). 
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 Suppose Left won the election at date t.  The graph of r(h) is a multiplicative 

constant of the graph of X L  pictured in Figure 3.  Obviously ζ(h)  is strictly increasing on 

the intervals [0,hL) and [h*,∞),  where r is constant.  On the interval [hL ,h* ] , we have 

r(h) = β0 +
γc

1+ γc h,  where β0 > 0.  Therefore on this interval  

ζ(h) =
h1−b

(β0 +
γc

1+ γc
h)c

. 

Therefore we have 

d
dh logζ(h) =

1− b
h −

γc 2

(1+ γc)β0 + γch  

and so 

d
dh logζ(h) > 0 ⇔

1− b
c >

γch
(1+ γc)β0 + γch . (4.5) 

Since β0 > 0, the r.h.s. of the last inequality is smaller than unity, and hence ζ(h)  is 

strictly increasing on [hL ,h* ]  if 
1− b

c ≥1.  But this means b + c ≤ 1, which is our premise. 

 Now suppose that Right won the election at date t.  Again consult figure 3.  

Exactly, the same kind of argument shows that ζ  is strictly increasing. 

Part (b) .  Since the sequence ˆ F t{ } is mean-preserving and ˆ F t +1 cuts ˆ F tonce from below, 

we have that ˆ F t +1 second-order stochastic dominates ˆ F t .  It therefore follows that the 

sequence of CVs is monotone decreasing, and therefore converges13.     ■  

Proof of Theorem 1: 

                                                 
13 We can prove that the sequence of distribution functions ˆ F t  converges weakly to a limit 

distribution.  But all we need in what follows is the convergence of the sequence of CVs. 
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1.  We prove the second claim first.  Fix h* > 0; without loss of generality, normalize by 

setting h*=1.  At date 0, both parties play the policy defined in Proposition 4, part (c).  

We shall, at each date, renormalize so that the descendents of h* always have one unit of 

human capital -- that is, we divide all human capitals  by the level of human capital of the 

contemporaneous member of the h* dynasty.  This does not affect coefficients of 

variation. 

 Therefore, at date 1, denoting the human capital of the child of h by S1(h) , we 

have: 

 S1(h)
1
c =

h
b
c (h + X0

*)
1(1+ X0

*)
,  for h ≤1, (4.9) 

where X0
* is defined by (3.14).  Eqn. (4.9) follows directly from Proposition 4(c), and our 

normalization procedure. 

2.  Denote the distribution of human capital at date t in the sequence B(h*) by Ft.  Then 

(Prop.4(c)) we have that the total resource bundle function at date t is 

 X t(h) =
Xt

* + h, 0 ≤ h ≤1
Xt

* +1, h > 1,
 
 
 

 

where Xt
* is defined by 

 Xt
* + h dF t

0

1

∫ (h) + (1− F t (1)) = µ t , (4.10) 

where µ t  is the mean of distribution Ft .  Thus: 

 
S2(h)

1
c =

S1(h)
b
c (S1(h) + X1

* )
1 + X1

* ,  for h ≤1

      =  
h

b
c (h + X0

*)
(1+ X0

*)(1 + X1
* )

+
X1

*S1(h)
b
c

1 + X1
* ,
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using (4.9), where S2(h) is the (normalized) human capital of the grandchild of h.  By 

induction, for the Tth  descendent we have: 

for h ≤1, ST (h)
1
c =

h
b
c (h + X0

* )

(1 + X j
* )

j = 0

T −1

∏
+ λtSt (h)

b
c ,

t =1

T −1

∑  (4.11) 

where λ t =
Xt

*

(1 + X j
* )

j =t

T −1

∏
, t = 1,...,T −1. 

3.  Let 0 < h2 < h1 < 1  be two levels of human capital at date 0.  If the product 

∆ = (1 + X j
*

j = 0

∞

∏ ) converges, then from (4.11), it follows that S∞(h2 )
1
c < S∞ (h1)

1
c , and so the 

CV of Ft does not converge to zero, because the ratio of human capitals of pairs of 

dynasties does not converge to unity. 

4. (the key step)  Thus, to prove the claim, we need only show convergence of the infinite 

product  ∆.   Integrating by parts, note that: 

 h dF t

0

1

∫ (h) = F t(1) − F t

0

1

∫ (h)dh,  

and so from (4.10) we deduce: 

 Xt
* = (1− F t

1

∞

∫ (h))dh;  (4.12) 

that is, Xt
* is the area ‘above’ the CDF on the interval [1,∞).  (Use the fact that 

µ t = (1− F t

0

∞

∫ (h))dh .)    By definition of F1  we have: 
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X1
* = (1− F1(h))dh = (1− F1

1

∞

∫
1

∞

∫ (S1(h)))dS1(h) =

(1− F 0(h))dS1
1

∞

∫ (h),
 

because F 0(h) = F1(S1(h))  (i.e., members of a dynasty occupy the same rank in their 

respective distributions).  For h>1 we have: 

 S1(h)
1
c =

h
b
c (1+ X0

*)
1 + X0

* = h
b
c        (from Prop.4(c)), 

and so  
dS1(h)

dh = bhb −1   .  Therefore, continuing the above expansion: 

 X1
* = (1− F 0(h))bhb −1

1

∞

∫ dh ≤ b (1− F 0(h))dh.
1

∞

∫  

By induction, it follows that: 

 Xt
* ≤ bt (1− F 0(h))dh.

1

∞

∫  

Therefore Xt
*

∑ converges, and, in particular, Xt
* → 0.  But note that 

 log ∆ = log(1 + Xt
*

∑ ), 

which converges iff Xt
*

∑  converges, because for Xt
* near zero, log(1 + Xt

* ) ≅ Xt
* .  

Therefore ∆ < ∞, as we set out to prove. 

5.  We next consider the sequence A(h*).   The lower boundary of the manifold ˆ Γ t  

consists of two segments.  On the first segment, the Left party plays the ideal policy of its 

militants which is the constant function X t(h) = µ t .  On the second segment, the Right 

party plays the ideal policy of its militants, given by Prop 4(b).  If the sequence A(h*) 

spends an infinite number of periods on the first segment, then, since the Left wins an 
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infinite number of times in that subsequence, the CV converges to zero, because the ratio 

of human capitals in any two dynasties approaches unity.  We therefore assume, w.l.o.g., 

that the quasi-PUNEs in the sequence A(h*) always lie on the second segment. 

 Thus, at date t, the Right plays the policy 

 Xt
R (h) =

xt + h, h ≤ yt

xt + yt , h > yt

 
 
 

 

where (xt ,yt ) are defined by the time-dated versions of equations (3.13a, 3.13b), and the 

Left plays the policy 

 Xt
L(h) =

xt + ht
L , h ≤ ht

L

xt + h, ht
L < h ≤ ht

*

xt + ht
*, h > ht

*,

 

 
 

 
 

 

where ht
L  is defined by 

 xt + ht
LF (ht

L ) + h dF t (h) + (1− F t

ht
L

h*t

∫ (h*t
))h* t

= µ t . 

6.  We next observe that, to show the CVs of {F t} converges to zero, it suffices to show 

that the CVs would converge to zero if Left won every election in the sequence A(h*).   

To see this, suppose that the actual sequence of Left/Right victories and associated 

policies is 

 X0
L ,X1

R ,X2
R ,X3

L ... (i) 

Now replace the Right policies in this sequence with the laissez-faire policy, which is 

 X lf (h) ≡ h; 

thus: 

 X0
L ,X lf , X lf ,X3

L ... (ii) 



 57

The laissez-faire policy leaves the CV unchanged.  Thus, the limit CV of (ii) is the limit 

CV of : 

 X0
L ,X3

L ... (iii) 

that is, of the sequence of Left policies.  But the limit CV of (i) is surely no larger than 

the limit CV of (ii), because the right policy at every date reduces the CV (see Prop. 6).     

So if the limit CV of (iii) is zero, so is the limit CV of (i), a fortiori. 

7.  Therefore it suffices to show that the limit CV of a sequence of Left victories is zero. 

8.  Consider the graph of the CDF of a distribution function at some date, illustrated in 

Figure 4, with various areas labeled.  Integrating (3.13a) by parts shows that 

 x = (1− F
y

∞

∫ (h))dh; 

that is, area D = x. The mean of the distribution, µ , is the area above the CDF; that is: 

 
µ = D + A + H + G + J + B + I, and 
h* = H + G + E + J + B + I + C .

 

Therefore µ − (x + h* ) = A − (C + E).  

But (4.14) says µ − (x + h *) = B − E,  and so, reverting to the time-dated notation: 

 At = Bt + Ct .  (4.15) 

9.  We next note that At + Dt → 0 with t; this employs the same argument as in step 4 

above, because Xt
L  is always a constant function for h > ht

*.   Therefore, At → 0, and so 

from (4.15), limBt = limCt = 0. 

10.  Denote r ≡ F t(ht
* ) , so by definition, area Bt = ht

L(r − F t(ht
L)) .  By step 9, since 

Bt → 0, we have that either ht
L → 0 or F t (ht

L ) → r .  We claim that ht
L  does not approach 
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zero as a limit.  Recall that xt → 0  (since xt = (1− F t

yt

∞

∫ (h))dh < (1− F t

1

∞

∫ (h))dh → 0). 

Integrating (3.13b) by parts gives: 

 
F t (h)

(xt + h)2
ht

*

y t

∫ dh =
F t(ht

* )
xt + ht

* ,  

and therefore  lim
t→ ∞

F t(h)
h2

1

yt

∫ dh = r.  

But 
F t(h)

h2
1

yt

∫ dh <
1
h2

1

y t

∫ dh = 1−
1
yt

,  and so lim yt ≥
1

1− r > 1.  Letting y* = lim yt , we 

therefore have that in the limit the total resource bundle function proposal by Right, in the 

sequence A(h*) is: 

 X∞
R (h) =

h, for h ≤ y *
y*,   for h > y *.

 
 
 

 

If ht
L → 0, then in the limit the total resource bundle function proposal of Left is: 

 X∞
L(h) =

h,   for h ≤ 1
1,   for h >1.

 
 
 

 

Now both Xt
L  and Xt

R  must integrate to µ t , which we next show gives a contradiction: 

0 = lim (Xt
R

0

∞

∫ (h) − Xt
L(h))dF t(h) =

lim( h dF t(h)
1

y*

∫ + (1− F t (y*))(y * −1)) = lim{hF t (h)
1

y *
− F t

1

y*

∫ (h)dh + (1− F t(y*))(y *−1)}

= (y *−1) + lim(F t(y*) − r − F t

1

y*

∫ (h) dh).                  (4.16)

 

Since y*> 1, limF t (y*) = 1.  (Recall , Left policies squeeze all h>1 eventually to 1.)  And 

 lim F t

1

y*

∫ (h)dh ≤ dh = y *−1.
1

y*

∫  
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Therefore, (4.16) says that  

 0 = (y * −1) + (1− r) − (y *−1)− , 

where the last term on the r.h.s. is a number no larger than y *−1.  But this is impossible.  

The contradiction demonstrates that limht
L ≠ 0, and so it follows that limF t (ht

L) = r. 

11. There are now  two cases to consider: either 

 (a) 1 is not a limit point of {ht
L}, or 

 (b) 1 is a limit point of {ht
L}. 

In case (b), for large t, the policy Xt
L  is arbitrarily close to giving all types the same total 

resources, and so almost the same is spent on the education of all children, and so the 

limit CV of the human-capital distribution is zero.  We will therefore complete the proof 

of the theorem by showing that case (a) cannot occur. 

 Suppose, then, case (a).  Then for large t, ht
L  is bounded away from 1 from below.  

In particular, there exist types h2 < h1 < 1 such that, for all large t, ht
L < h 2.  For such t, 

we have: 

 St(h
i)

1
c =

hi
b
c (hi + xt )
1+ xt

, i = 1,2. 

It follows, again by application of the argumentation of step 4, that in the limit, the 

human capital possessed by the descendents of h2
 and h1 are different, that is: 

 S∞(h2 ) < S∞ (h1).  

Thus, there is an interval of measure F 0(h1) − F 0(h 2)  that lies between the largest limit 

point of the sequence {ht
L}and 1.  This is impossible, since limF t (ht

L) = lim F t(1) = r.   

The contradiction establishes that, indeed, case (b) holds, which proves the theorem. ■  
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Proof of Theorem 2: 

The  argument preceding the statement of the theorem in the text shows that convergence 

to equality occurs if and only if, for all t, the median mt  is less than the meanµ t .   

(Equality of the mean and median is a singularity that we ignore.)  In period t, if the 

median has been less than the mean in all prior periods, the median and mean of the 

distribution are given by 

 kmb t

   and  k hbt

∫ dF(h),  

respectively, for some constant k.   We wish, therefore, to know if: 

 mr < hr∫ dF(h)   (6.1) 

where r = bt ; in other words, whether 

 m < ( hr∫ dF(h))
1
r ≡ Mr (F).   (6.2) 

Now b<1 implies that r decreases to zero as t gets large.  It is well-known that, as r 

decreases, so does Mr(F)   (see Hardy, Littlewood, and Polya [1964] Theorem 192, p. 

143), and further, that 

 lim
r→ 0

Mr (F) = exp( log h dF(h)∫ ) . 

(Hardy et al, Theorem 187, p, 139).   Therefore, (6.2) is true for all t ≥ 0 iff 

m ≤ exp( log h dF (h)∫ ) , or , in other words iff 

 log m ≤ log h dF (h).∫  

This is therefore precisely the condition in which the CV of the distribution of human 

capital tends to zero.         ■  
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Figure 1  The policies of Proposition 4(b) and 4(c)  
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Figure 3  Left (bold) and Right policies in a quasi-PUNE (Prop. 5) 
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Figure 4   Aid in the proof of main theorem 
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Figure 5a    CDF of human capital after five Right victories: simulation 
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Figure 5b CDF of human capital after five Left victories: simulation 
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 Laissez-faire (LF) Democracy Downsian politics 
b+c < 1 CV → 0 CV → 0,

faster than LF
           CV → 0 

 
 

b+c =1 constant CV  Theorem 1 Theorem 2 
b+c >1 CV  explodes CV decreases to 0.4 

(simulation) 
if b<1:  
strong skew ⇒CV → 0;
otherwise,  CV explodes
 

 
 

Table 3: Behavior of coefficient of variation of human capital by regime type 
 
 



 70

Table 1   Coefficients of variation in six-generation simulations when b=c= 0.5 
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gen mean median cvar winner
0 40. 30. 0.777778 Right
1 31.4903 29.4005 0.238905 Right
2 25.5745 25.8911 0.133496 Left
3 20.6967 21.9691 0.0552047 Right
4 16.9311 18.2861 0.045739 Right
5 13.854 15.1532 0.040081 Right
6 11.3373 12.5166 0.0363719 none

gen mean median cvar winner
0 40. 30. 0.777778 Right
1 31.4903 29.4005 0.238905 Left
2 24.4413 25.8911 0.111755 Right
3 19.9764 21.7406 0.0876068 Left
4 16.026 18.1286 0.0647746 Right
5 13.1141 14.9711 0.0598669 Left
6 10.8325 12.3349 0.0400345 none

gen mean median cvar winner
0 40. 30. 0.777778 Right
1 31.4903 29.4005 0.238905 Left
2 24.4413 25.8911 0.111755 Left
3 19.401 21.7406 0.0756528 Left
4 15.6823 18.0099 0.0605814 Left
5 12.8274 14.8266 0.0492044 Right
6 10.4978 12.1695 0.0478734 none

gen mean median cvar winner
0 40. 30. 0.777778 Right
1 31.4903 29.4005 0.238905 Right
2 25.5745 25.8911 0.133496 Left
3 20.0601 21.9691 0.0825377 Right
4 16.4099 18.2861 0.0712898 Left
5 13.3159 15.1532 0.0535628 Left
6 10.9721 12.4772 0.0378218 none

gen mean median cvar winner
0 40. 30. 0.777778 Left
1 30.1078 29.4005 0.209562 Left
2 23.3832 25.3509 0.104315 Left
3 18.6632 21.1867 0.0740434 Right
4 15.2701 17.5126 0.0672418 Left
5 12.5011 14.4383 0.051507 Left
6 10.3844 11.8592 0.0346534 none

gen mean median cvar winner
0 40. 30. 0.777778 Left
1 30.1078 29.4005 0.209562 Left
2 23.3832 25.3509 0.104315 Right
3 19.1164 21.1867 0.0841093 Left
4 15.4042 17.6068 0.0640802 Right
5 12.6056 14.5167 0.0599651 Left
6 10.4662 11.9462 0.038533 none

gen mean median cvar winner
0 40. 30. 0.777778 Left
1 30.1078 29.4005 0.209562 Right
2 24.5092 25.3509 0.127354 Right
3 20.0248 21.4133 0.0967003 Right
4 16.3769 17.9313 0.0802714 Left
5 13.2326 14.9242 0.0565481 Left
6 10.8889 12.3143 0.0382226 none

gen mean median cvar winner
0 40. 30. 0.777778 Right
1 31.4903 29.4005 0.238905 Left
2 24.4413 25.8911 0.111755 Left
3 19.401 21.7406 0.0756528 Left
4 15.6823 18.0099 0.0605814 Right
5 12.8334 14.8266 0.0574073 Right
6 10.5026 12.1876 0.0552878 none

gen mean median cvar winner
0 40. 30. 0.777778 Right
1 31.4903 29.4005 0.238905 Left
2 24.4413 25.8911 0.111755 Left
3 19.401 21.7406 0.0756528 Right
4 15.8728 18.0099 0.0675324 Left
5 12.9463 14.8723 0.0520871 Right
6 10.5949 12.2253 0.0500408 none
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Table 2  Coefficients of variation when b=c= 0.75 
 

gen mean median cvar winner
0 40. 30. 0.777778 Left
1 46.3957 40.6303 0.431824 Right
2 62.1499 57.4749 0.397763 Left
3 92.1395 94.2662 0.293562 Right
4 178.626 186.659 0.389374 Right
5 497.265 525.59 0.50656 none

gen mean median cvar winner
0 40. 30. 0.777778 Left
1 46.3957 40.6303 0.431824 Right
2 62.1499 57.4749 0.397763 Left
3 92.1395 94.2662 0.293562 Left
4 168.301 186.659 0.245359 Right
5 439.997 508.532 0.358216 none


	Then

